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According to the theory of Peierls and Nabarro[l],
the Peierls-Nabarro stress Tp is given by

where h is the natural spacing of atomic planes
paralell to slip plane, b the magnitude of Burgers
vector, G the shear modulus and V the Poison’s ratio.

In Fig. 1. are shown the experimental values of
Tp/G against h/b. The Tp of b.c.c. metals (K[2],
Fe, Nb, Ta[3], Mo[4]) and a B2 compound B-CuZn[3],
and those for {110}110&#x3E; slip in ionic crystals of
NaCl-type (LiF, NaCl, KC1 etc.[5-7]) were determined
accurately by the plastic deformation at low temper-
atures (T~0K). To be noted is that h/b for 03B2-CuZn
is a half of that for b.c.c. metals because b=alll&#x3E;.

When it is difficult to deform crystals at low tem-

peratures, Tp is deduced by an appropriate extra-
polation to OK of the c.r.s.s. The Tp for {001}
110&#x3E; slip in ionic crystals of NaCl-type[6,7] and
those for zinc blende structure (CdTe, HgSe, CuCl,
and CuBr[8]), and of b.c.c.3He [9] were estimated in

this way. The h/b for zinc blende structure is
0.614 when dislocations move between shuffle set and

0.204 between glide set. An f.c.c. metal Ag[10],
alkali-halides of CsCl-type (CsBr and CsI, {110}
001&#x3E; slip) [11,12] and PbS ({001}110&#x3E; slip) [7]
are easy to deform at low temperatures, but one can
find no region of Peierls mechanism. In these

cases the c.r.s.s. at T=OK gives anly an upper limit
of Tp. A crude estimate of Tp for basal slip in
a-A1203 is possible from the data of c.r.s.s. at
1200-1500°C [13]. The plasticity data of a-quartz
under hydrostatic pressure at 300-1000°C [14] indi-

cate that Tp of a-quartz should be several GPa. For

a-A1203 and a-quartz, h/b is assumed to be the
widest spacing of atomic planes normal to c-axis.

The solid lines in Fig. 1 are the relations of

eq.(1) for V=0.3. The line A is the case of per-
fect (non-splitting) dislocations. Some of the

experimental Tp/G are close to the line A, but the
others are far below it. When dislocations split
into partial dislocations, b in eq.(1) is replaced
by b* of the partials. The line B is the case of
b*=b/2 and the line C is for b*=b/~3 (Shockley par-
tials in fcc lattice). The splitting of disloca-
tions in f.c.c. metals and 03B2-CuZn is well known.
Dislocations in CsBr and CsI can also split (b*=b/2)
because of the low stacking fault energy_[12].
Fig. 1 suggests the splitting of {110}110&#x3E; dislo-
cations in ionic crystals of NaCl-type and {001}
110&#x3E; dislocations in PbS.
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Fig. 1. Tp vs h/b. Solid lines indicate
the relations of eq.(1) for 03BD=0.3. A: for

perfect dislocations with Burgers vector b’,
B: for half dislocations with b*=b/2, and
C: for Shockley partials in f.c.c. lattice
with b*=b/~3. (s) and (g) for zinc blende
structure denote shuffle set and glide set,
respectively.
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