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Mechanical models of the effect of grain boundary sliding on
creep and creep rupture

V. Tvergaard

Department of Solid Mechanics, The Technical University of Denmark, Building 404, 2800
Lyngby, Denmark

(Reçu le 15 juin 1987, accepté le 2 novembre 1987)
RÉSUMÉ - L’intluence du glissement aux joints des grains sur les propriétés mécaniques des matériaux
soumis au fluage à haute température a été étudiée par de nombreux modèles. Certains se sont
concentrés sur l’interaction entre le comportement visqueux linéaire des joints et le fluage en loi
puissance des grains. On trouve qu’il y a une zone de transition entre les fortes contraintes où le
glissement au joint à peu d’influence et les faibles contraintes où il accélère le fluage. D’autres
modèles se sont concentrés sur l’effet de glissement sur la rupture intergranulaire par fluage. Des

joints de grains qui glissent facilement conduisent à des temps de rupture très courts, et le
comportement est fortement influencé par la densité de facettes induisant la cavitation dans les
joints de grains.
ABSTRACT - The influence of grain boundary sliding on the mechanical behaviour of materials subject
to creep at elevated temperatures has been investigated by a number of model analyses. Some models
have focussed on the interaction of linearly viscous behaviour in the grain boundaries and power-law
creep of the grains. It is found that there is a transition range such that at higher stresses

sliding has little influence, while at lower stresses sliding accelerates creep. Other investiga-
tions have focussed on the effect of sliding on intergranular creep fracture. Freely sliding grain
boundaries give much reduced rupture times, and the behaviour is rather strongly affected by whether
the cavitating grain boundary facets are closely-spaced or well-separated.
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1. INTRODUCTION

A number of experiments or. rolycrystalline metals
have demonstrated that tl,e resistance to sliding on
the grain boundaries is low compared to the
resistance towards inelastic deformation of the

grains themselves, particularly if the temperature
is sufficiently high or the strain-rate is low.
Therefore the creep of polycrystals at elevated
temperatures is frequently non-uniform, because
deformations caused by sliding at grain boundaries
are superposed on the uniform deformations of the
grains.

The mechanics of grain boundary sliding is often
represented by a linearly viscous relationship
between the rate of slidina and the resolved shear
stress on the plane of the boundary. Ashby [1] has
treated the atomistic aspects of grain boundary
sliding and has derived expressions for the bounda-
ry viscosity. These derivations show that the value
of the viscosity is strongly dependent on whether
the angle of tilt between the crystal lattices is
large or small, and on whether the tilt is
symmetric. Furthermore, Raj and Ashby [2] have
shown that the viscosity is strongly increased by
larger irregularities, such as particles, in the

grain boundary.
In a polycrystal grain boundary sliding can only

take place, if a mechanism of grain deformation is
available to accommodate sliding. Therefore, the
rate of sliding is often determined by the rate of
deformation of the grains rather than by the grain
boundary viscosity. Finding the rate of sliding
requires the solution of a nonlinear boundary value
problem to determine the deformation fields inside
the grains. Such boundary value problems have been
solved numerically by Crossman and Ashby [3] and

Ghahremani [4] for cases where power-law creep is
the accommodating mechanism. These analyses have
been carried out for plane arrays of hexagonal
grains and they show a transition from a range of
relatively low stresses, where grain boundary
slidinc gives a significant contribution to the
overall strain-rate, to a range of relatively high
stresses, where sliding has little effect.

Creep rupture in polycrystalline metals at high
temperatures occurs mainly as intergranular
fracture. Microscopic cavities nucleate and grow
on the grain boundaries (Cocks and Ashby [5],
Argon [6]), and coalescence of such cavities leads
to micro-cracks. Experimental results show that
the cavitation leading to micro-cracks occurs main-
ly on grain boundary facets normal to the maximum
principal tensile stress direction (Hull and Rimmer

[7], Trampczynski, Hayhurst and Leckie [8], Dyson,
Verma and Szkopiak [9]). After that the open micro-
cracks have formed, final intergranular creep
fracture occurs as these cracks link up. The stress

distribution in the vicinity of a cavitated facet
is strongly dependent on whether or not sliding
takes place at other grain boundaries adjacent to
the facet. To investigate this dependence Tvergaard
[10] has analysed an axisymmetric model problem,
which represents a situation, where far from all
the facets approximately normal to the maximum
principal tensile stress are cavitated. The axi-

symmetric model was chosen rather than a plane
model because this gives a more realistic
representation of the geometric constraints in an
actual three dimensional array of grains. For the
same reason Anderson and Rice [11] have carried out
an approximate 3-D analysis for an aggregate, in
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which the grains are represented as so-called
Wigner-Seitz cells. In this case all facets normal

to the maximum tensile stress were taken to be

cavitated. Both investigations show that grain
boundary sliding has a significant influence on
creep rupture. The behaviour is also very sensitive
to whether or not all relevant facets are cavitated.

The final failure of a polycrystal, after that
micro-cracks have been formed, can occur by grain
boundary sliding accommodated by power-law creep of
the grains. Axisymmetric model analyses have been
carried out by Tvergaard [12], to get an estimate
of the time required for this final part of the
failure process.

In the present paper these different investiga-
tions of the influence of grain boundary sliding on
the mechanical behaviour of materials will be
discussed.

2. GRAIN BOUNDARY VISCOSITY

Grain boundartes are in some cases modelled as thin

layers, which slide in a Newtonian viscous way,
when a shear stress T is applied in the plane of
the boundary. The thickness ô, of these layers is
typically of the order of twice the atom size.

The microscopic, atomistic aspects of sliding at
a boundary between two grains have been treated by
Ashby [1]. During sliding atoms move by diffusion
from one side of the boundary to the other, and
thus sliding is accompanied by migration of the
grain boundary. The viscous resistance against
sliding depends on the shapes of the grain surfaces
that meet at the boundary, and on the angle of tilt
between the crystal lattices of the two grains.

For a symmetric high-angle boundary Ashby [1]
has derived a simple expression for the boundary
viscosity, relating the shear stress T to the

relative sliding velocity Ù . In this derivation

attention is focussed on the atom transport needed
to preserve the structure of the boundary, while it
slides. It is argued that the stress raises the
chemical potential of certain atoms in one crystal
(to the value 03BC1) and lowers the potential of
certain atoms in the other crystal (to u2 ) and

that during sliding atoms flow from regions of high
to regions of low potential. The power dissipated
must be supplied by the external stress, so that

where Ù is the number of atoms flowing per unit
time per unit boundary area. The flux is propor-
tional to the gradient of the chemical potential,
which gives an expression for (03BC1 - 03BC2) in terms

of N , and furthermore conservation of matter

gives N proportional to û . Substituting these
two expressions into (2.1) gives

which defines the boundary viscosity pB in terms

of the boundary diffusion coefficient DB , the

atom size b , Boltzmann’s constant k , and the
absolute temperature T .

Ashby [1] also explains that in reality sliding
does not occur in the continuous way suggested by
the first derivation, but by the motion of
appropriate boundary dislocations in the boundary
plane. A derivation based on this mechanism gives
the following alternative expression for the boun-
dary viscosity

where p is the number of dislocations per unit

length, and À is the length of the boundary
periodicity. Thus, (2.3) and (2.2) are identical

when p approaches the limit 1/03BB, but for low
dislocation densities on the boundary the viscosi-
ty nB is significantly higher than the lower
bound (2.2).

At a low angle tilt boundary the shear viscosity
is much higher [1]. Here, the cores of the disloca-
tions that form the low angle boundary are separat-
ed by good crystal, and therefore the flow of atoms
must occur by bulk diffusion, which is much slower
than boundary diffusion. On the other hand,
probably most real grain boundaries belong to the
high-angle type, where the shear viscosity is
relatively lower, because the grain boundary can
act as a high-diffusivity channel.

The viscosities calculated so far are based on

the assumption that irregularities on the boundary
surface are of atomic height. However, boundaries
are seldom as flat as this, and larger irregulari-
ties increase the viscosity. Raj and Ashby [2]
have analysed the influence of various irregulari-
ties. For a periodic stepped boundary, assuming
that boundary diffusion is the dominant mode of
matter transport from ledge to ledge, the viscosity
is raised by a factor (h/b)2 , when h is the

height of the steps, so that the viscosity in (2.2)
is increased to the value 

A dispersion of particles or précipitâtes in the
grain boundary raise the grain boundary viscosity
in a similar manner [2,3].

3. SLIDING ACCOMMODATED BY POWER-LAW CREEP

In a polycrystalline solid sliding at the grain
boundaries would lead to incompatibilities between
the grains, if there was not a mechanism of grain
deformation to accommodate sliding. The accommodat-

ing mechanism can be elastic deformations of the
grains. For a solid subject to high temperature
creep the accommodating mechanism is either
dislocation creep of the grains, usually modelled
as power-law creep, or diffusion (i.e. diffusional
flow of matter through the grain or along its
boundaries).

The effect of grain boundary sliding in a power-
law creeping polycrystal has been analysed by
Crossman and Ashby [3]. They considered a plane
array of hexagonal grains (see Fig. 1), where

Fig. 1. Plane array of hexagonal grains. Only the
hatched region is analysed.
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sliding at the grain boundaries is assumed to
follow a linearly viscous law of the form (2.2),
with a viscosity ~B dependent on grain boundary
irregularities such as particles or precipitates.
The creep strain-rate tensor fiC inside the

grains is represented by the usual expression for
lower-law creep

where 03B5o and Go are reference strain-rate and
stress quantities, the creep exponent is n , the

stress deviator is S’i = cii - Gij 03C3kk/3 ,
expressed in terms of the stress tensor a’3 and
the metric tensor G’3 , and 6e = (3sijsij/2)½
is the effective Mises stress. 

The numerical solutions in [3] were obtained by
the finite element method, using a fine mesh near
the triple points, where very high strain-rates
occur. Also the grain boundary regions were
modelled by elements, which made it necessary to
give these regions an unrealistically large thick-
ness around 1 per cent of the grain size. For high
stress levels and relatively high creep strain-
rates nearly no sliding was predicted at the grain
boundaries, whereas for low stress levels the shear
stresses at the grain boundaries were released so
rapidly that there was essentially free sliding.
Thus, both at low stresses and at high stresses the
aggregate follows power-law creep (with different
values of the reference strain-rate), whereas
power-law creep is not satisfied in an intermediate
stress range, where a transition occurs between the
two straight lines in the log Ëe vs. log 03C3e
diagram shown in Fig. 2. 

Fig. 2. Illustration of transition region due to
linearly viscous sliding between power-law creeping
grains.

In the low stress range, where the boundaries

slide freely, the strain-rate field inside a single
grain is strongly non-uniform, even though the
specimen is subjected to a uniform macroscopic
stress state. Since the linearly viscous behaviour
in the grain boundaries has no influence here, all
resistance to creep of the aggregate comes from
power-law creep (3.1) inside the grains, and there-
fore the stress dependence of the macroscopic creep
strain-rate will still follow a power-law with the
same exponent n . Crossman and Ashby [3] write the
expression for the macroscopic creep strain-rates
in the form (3.1a), but with the effective creep
strain rate 03B5Ce given by a modified expression

Here, the stress enhancement factor f (f &#x3E; 1)
describes the acceleration of creep caused by free-
ly sliding boundaries. The stress enhancement
factor was calculated in [3] for values of the

creep exponent n of 1.0 , 4.4 and 8.8 ,
respectively, and in all three cases f = 1.1 ± 0.01
was found. For pure aluminium with two different

grain sizes Crossman and Ashby [3] estimated the
location of the transition region as a function of
stress and temperature and plotted this boundary
into the deformation-mechanism maps.

Ghahremani [4] also analysed a plane array of
,hexagonal grains with linearly viscous grain
boundary sliding accommodated by power-law creep
of the grains. He found the transition from freely
sliding grain boundaries, and he also calculated
the stress enhancement factor f in (3.2) as a

function of n . The values of f found here are

somewhat higher than those found in [3], ranging
from 1.16 for n = 1 to 1.22 for n = 10 . In

[4] the linearly viscous behaviour in the grain
boundaries is represented by a jump condition,
which directly relates the difference in tangential
displacement rates of the grain surfaces on either
side of the boundary to the shear stress on the
boundary. Thus, in [4] no finite elements are used
to represent the thin grain boundary layer.
Ghahremani explains the discrepancy between the
values of f found in [3] and [4] by the way in
which the grain boundaries are modelled. The
elements inside a thin boundary layer must have
very large aspect ratios, and it is known that such
large aspect ratios tend to reduce the accuracy of
the solution.

An early work describing the effect of linear
viscous sliding in the boundaries between power-law
creeping grains is that of Hart [13], which makes
use of simple fiber mode 1s to develop a phenomeno-
logical model. Although these fiber models do not
account for the details of the polycrystal deforma-
tion, Hart did predict the transition range and the
limiting power-law behaviour at low and high
stresses, respectively.

Elastic accommodation of grain boundary sliding
can play a role when a polycrystalline material is
subjected to cyclic loading, while the stress
levels remain so low that power-law creep has no
influence. In such circumstances sliding at the
boundaries leads to a reduction of the elastic

moduli, and the grain boundary viscosity
contributes to the dissipation of mechanical energy
into heat. These effects of sliding can be
represented in terms of the complex viscoelastic 
moduli of the material. A numerical analysis of
the complex shear modulus has been carried out by
Ghahremani [14], for a model material made up of a

plane array of hexagonal grains, as that shown in
Fig. 1. This analysis has resulted in curves show-
ing the real and imaginary parts of the shear
modulus as functions of the frequency of oscilla-
tion, the elastic modulus of the grains, the grain
size and the grain boundary viscosity.

The accommodation of sliding discussed in the
present section relates to the deformations of a
whole grain necessary to allow for sliding. How-
ever, it is noted that, for a non-planar boundary,
also the derivation of the grain boundary viscosity
itself (e.g. see (2.4)), depends on local deforma-
tions necessary to accommodate sliding [1,2]. Thus,
the rate of sliding depends on various accommodat-
ing mechanisms, which are active on quite different
size scales.
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4. EFFECT OF SLIDING ON CREEP RUPTURE

Creep rupture in polycrystalline metals at elevated
temperatures can occur by a number of différent
mechanisms. Ashby and Dyson [15] have distinguished
four broad categories of failure mechanisms, i.e.

loss of cross-sectional area associated with large
strain, failure by the formation and subsequent
growth of cavities, accelerated creep due to

degradation of the microstructure, or damage by
gas-environmental attack. Here, the focus will be
on material models that consider the growth of
cavities on grain boundary facets roughly
perpendicular to the maximum principal tensile
stress direction. This type of intergranular
damage, belonging to the second category discussed
in [15], is frequently observed in experiments.

For a case with nô grain boundary sliding Rice
[16] has suggested modelling a cavitating facet as
a penny-shaped crack, where the normal tensile
stress an necessary for cavity growth acts on the
crack surfaces. A constitutive model for creep with

grain boundary cavitation has been developed by
Tvergaard [17] as an extension of this penny-shaped
crack model, making also use of an expression for
the macroscopic creep strain rate of a micro-
cracked solid, derived by Hutchinson [18].

When sliding takes place at the grain boundaries
adjacent to a cavitating grain boundary facet, this
facet cannot directly be modelled as a penny-shaped
crack. Some insight in the effect of’sliding on
grain boundary cavitation can be gained from the
numerical solution of model problems, such as the
axisymmetric model studied by Tvergaard [10]. This
model is illustrated in Fig. 3. The maximum

Fig. 3. Axisymmetric model problem used to study
the influence of sliding on grain boundary cavita-
tion. Only the hatched region is analysed.

principal tensile stress is in the xl -direction,
normal to the cavitated facet. Half of each grain
adjacent to this facet is represented by a truncat-
ed cone emanating from the edges of the facet,
while the external ring of material represents part
of a number of grains surrounding the two central
grains of the model.

Only completely free grain boundary sliding is
accounted for in the analyses in [10]. Thus, the

grain boundary viscosity ~B in (2.2) is consider-

ed negligible, which means that the model refers to
the behaviour at relatively low stress levels,
below a transition range analogous to that illu-
strated in Fig. 2.

The type of periodicity of the cavitated facets
implied by the axisymmetric model is shown in
Fig. 3b, which illustrates that not all facets
normal to the maximum principal tensile stress are
taken to be cavitated. In cases, where the normal

tractions on the cavitating facets are essentially
zero, a significant part of the load is carried
through the uncavitated facets, whereas with all

relevant facets cavitated the full load would have
to be carried through sliding facets inclined to
the tensile direction. The model in Fig. 3, with
zero sliding at the triple points where no facets
are cavitated, is expected to also give a good
indication of the cavitation behaviour in cases
where fewer facets are cavitated. However, if

significantly more facets are cavitated than shown
in Fig. 3b, the present model would no longer give
a good approximation.

The material inside the grain is taken to
deform by power law creep (3.1) in addition to

elastic deformations. The freely sliding behaviour
at the grain boundaries is described approximately
in terms of a layer of linear elastic springs.
Thus, tangential stresses on the sliding surfaces
are neglected, and the true stress on normal to

the current orientation of the grain boundary is
taken to be

where k is the spring stiffness, and d is the

distance between the two grains sliding against
one another. Allowing for a non-zero distance d

gives an inaccuracy, which is kept very small by
using a large stiffness k .

At time t = 0 the loads are applied at the
surface of the model in Fig. 3a, and subsequently
the loads vary slightly with time, such that the
values of the average axial and radial true

stresses ci and 62 remain fixed. The deforma-

tions of the grains are approximated by finite
elements, using the mesh shown in Fig. 4, and

large strains are accounted for in the analysis.

Fig. 4. Finite element mesh used in numerical

analyses.

The details of the field equations and the boundary
conditions are specified in [10] and shall not be
repeated hère.

The grain boundary cavities, with average
spacing 2b and radius a , grow by diffusion as
well as by dislocation creep of the surrounding
material. The diffusion along the void surface is
assumed to be sufficiently rapid, relative to the
diffusion along the grain boundary, to maintain

the quasiequilibrium spherical-caps void shape
(see Fig. 5). At sufficiently low tensile stresses
cavity growth by grain boundary diffusion is
dominant. Then the rate of growth of the cavity
volume is obtained by the rigid grains model,
early analysed by Hull and Rimmer [7], and sub-
sequently modified by various authors, including
Needleman and Rice [19], who found

Here, un is the average normal stress on the

facet in the vicinity of the cavity, Qs is the

sintering stress, f is the area fraction of the
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Fig. 5. (a) Spherical-caps shape of a single cavi-
ty. (b) Equally spaced cavities on a grain bounda-
ry. (c) An isolated, cavitated grain boundary facet
in a polycrystal.

grain boundary which is cavitated, and D = DB03B4B03A9/kT
is the grain boundary diffusion parameter, where

DB6B is the boundary diffusivity, and 03A9 is the

atomic volume.

Based on approximate results by Budiansky,
Hutchinson and Slutsky [20], for the growth of a
spherical void in a power-law creeping material,
the following volumetric growth-rate expressions
relating to the spherical-caps shape are employed

Here, 03B5Ce = 03B5o(03C3e/03C3o)n is the effective creep
strain-rate, cm and ae are the mean stress and

Mises stress, respectively, representing the
average stress state in the vicinity of the void,
and the constants are given by an = 3/2n ,
03B2n = (n - 1) (n + 0 .4319) n2 and

h(03C8) = [(1+cos03C8)-1-cos03C8/2]/sin03C8 . For the high
triaxiality range, 03C3m/03C3e &#x3E; 1 , the expression
(4.3) was suggested by Sham and Needleman [21], and
the Low triaxiality approximation was introduced in
[22].

Needleman and Rice [19] have used the parameter

as a stress and temperature dependent length scale,
where V, a. and 03B5Ce are the values appearing in
(4.2) and (4.3). Thus, for a/L  0.1 the total

volumetric growth-rate of a cavity with radius a

is very well approximated by (4.2), whereas growth-
rates larger than that predicted by (4.2) are found

for higher values of a/L , due to an increasing
influence of dislocation creep.

The following approximation of the cavity
growth-rate

taking into account the interaction of diffusive
growth and power-law creep growth, has been found
to agree with numerically determined growth-rates,
both for the high triaxiality range [21], and for
lower triaxialities [19,22]. From (4.5) the rate

of growth of the cavity radius is found as
a = V/(403C0a2h(03C8)).

The average separation between the two grains
adjacent to the cavitating facet is 6 = V/iTb 2
where V is the cavity volume and 2b is the

average spacing. Thus the rate of growth of this
séparation, 6 , to be used as boundary condition
in the model problem (Fig. 3a), is given by

Many metals appear to contain rather few cavi-
ties in the initial stages of creep, so that the

time required for the nucleation of new cavities
may have a significant effect on the total rupture
time. Different mechanisms of cavity nucleation,
discussed by Argon [6] and Dyson [23], have the
common feature that they depend on dislocation
creep, which is a stochastic process, and this can

explain why nucleation is often found to occur
continuously during creep. Some experimental
investigations indicate that the number of cavi-
ties is proportional to the effective strain, so

that the rate of increase of the cavity number N

per unit initial area of the grain boundary facet
is given by

In some cases continuous nucleation is observed
until fracture, whereas in other cases a satura-
tion value Nmax is reached before rupture [23].

Now, the simplifying assumptions are used that
all cavities near a given point of the facet are
of equal size (equal to the size of the cavity
first nucleated at that point) and equally spaced.
In principle, the growth of cavities nucleated at
different times should be followed separately; but
small voids grow much faster than larger voids,
due to diffusion, and analyses indicate that the
smaller voids catch up so rapidly that neglecting
the size differences may be a good approximation.
Then, with N given by (4.7), the ratio b/b , to
be substituted into (4.6) is simply taken to be

where XI and 03BBII are the principal stretches at
the point considered on the facet.

In the numerical solution the stresses am and

Qe in the expression (4.3) were calculated as
averages over the four triangular elements within
each quadrilateral in the row of elements adjacent
to the grain boundary facet. The normal stress an
in (4.2) could be obtained the same way; but the

expression (4.1) was preferred, to better represent
the variation of on near the triple grain junc-
tion (at x2 = RO) . For the sintering stress as
in (4.1) the value as = 0 was used as an

approximation.
The geometry of the model problem used for the

results presented in the next few figures is given
by BO/Ao = 0.577 , RO/Ao = 0.333 and

CO/AO = 0.667 , so that the cone angle is ~ = 30°
(see Fig. 3a). The creep exponent is taken to be
n = 5 , Poisson’s ratio is v = 1/3 and the angle
defining the spherical-caps shape of the cavities
(Fig. 5) is taken to be 03C8 = 75° . The figures
show the growth of a/b as a function of time at
the two radii X2/Ro = 0.20 and x2/RO = 0.92 ,
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and coalescence of the cavities is taken to occur

when a/b is close to unity..All times are
normalized by a reference time tR = 6e/(Eeé) ,
where ce = |03C31 - 03C32|. is the average effective

Mises stress and ce = 03B5o(03C3e/03C3o)n is the

corresponding effective creep strain-rate.
The average true stresses, relative to Young’s

modulus E , are specified by al/E = 0.001 and

G21al = 0.5 , so that the average effective Mises
stress is C./E = 0.0005 . All cavities are assumed
to be present from the beginning, uniformly
distributed over the facet and of equal size,
specified by the initial values a,/b, = 0.1 and

bj/Ro = 0.1 . The grain boundary diffusion
parameter 0 is given in terms of L by the
initial value aI/LI = 0.025 (based on substitut-

ing the average macroscopic values of ce and Eé
into (4.4)).

Fig. 6. Development of cavities and stresses at a

grain boundary facet for a,/LI = 0.025 (from
[10]).

Fig. 6a shows that the rate of growth of the
cavities near the edge of the facet is nearly
identical to that near the centre, in contrast to

the result found in the absence of grain boundary
sliding, where the cavity growth is slower near the
edge [22]. This uniform opening of the facet is al-
so seen in the deformed meshes shown in Fig. 7.

Furthermore, the cavity growth found in Fig. 6a is
about six times as fast as that found without slid-

ing [22], so sliding has a very significant effect
on the time to failure by cavity coalescence. The
constitutive model referred to in the figures will
be discussed subsequently, in Section 5.

Fig. 6b shows that the normal stresses’ an on

the cavitating facet decay rapidly towards zero,
because the power law creep of the grains is not
rapid enough to accommodate the diffusive cavity
growth-rate (4.2) that would occur under a higher
normal stress. This situation, first noted by Dyson
[24], is usually described as creep constrained

Fig. 7. Deformed meshes corresponding to

a,/LI = 0.025 . (a) t/tR = 2.21 , (b) t/tR = 4.27
(from [10]).

cavitation. A characteristic feature associated
with creep constrained cavitation is that failure
occurs at relatively small strains.

Figs. 8 and 9 show the results of a computation,
where the only difference from that illustrated
above is a smaller value of the grain boundary
diffusion parameter specified by a,/LI = 0.33 .

lUI

Fig. 8. Development of cavities and stresses at a
grain boundary facet for a,/LI = 0.33 (from
[10]).
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Fig. 9. Deformed meshes corresponding to

a,/LI = 0.33 . (a) t/tR = 87.1 . (b) t/tR = 152
(from [10]).

Here, the normal stress is not relaxed before final
failure occurs, and thus the cavity growth is not
creep constrained. Fig. 8a shows that in this case
grain boundary sliding results in much faster
growth near the edge of the facet than in the
central part of the facet. This behaviour is also

clearly visible in the deformed meshes in Fig. 9,
which show the formation of wedge-cracks by early
cavity coalescence at triple point junctions. It

is also noted that the strains are much larger here
than those found in the previous case, e.g. the

logarithmic strain 03B51 = 0.115 at t/tR = 152 .
The initial failure at the triple point in Fig. 8

occurs at about 1/4 of the time to failure in

the absence of grain boundary sliding.
Several other cases have been analysed in [10],

and in general these results confirm the types of
response shown in Figs. 6 - 9. This is also true
when continuous nucleation of cavities takes place
during the lifetime, as modelled by (4.7) and

(4.8). However, in a case corresponding to that
considered in Figs. 6 and 7, the relaxation of an
to creep constrained cavitation is somewhat delayed
when all cavities are not yet nucleated and the

macroscopic logarithmic strain at failure is some-
what increased.

The interaction of free grain boundary sliding
and intergranular cavitation has also been analysed
by Anderson and Rice [11], who represented the
grains by so-called Wigner-Seitz cells. For such
grain shapes a full 3D analysis is required, and
this is done approximately in [11] by application
of a stress-based variational principle. A
significant difference from the type of situation
illustrated in Fig. 3b is that Anderson and Rice

[11] consider the limiting case, where all facets
normal to the maximum tensile stress are cavitated.
This does not give too large differences in a range
with no creep constraint on cavitation (such as

Figs. 8 and 9); but in the creep constrained range,
where Qn = 0 on the cavitating facets, it has the

drastic effect that the macroscopic creep rates are
increased by a factor 100 or more.

When open microcracks have formed by cavity
coalescence on a number of grain boundary facets,
final failure requires that these microcracks link

up. This final failure process can occur by cavity
growth on adjacent grain boundaries inclined to the
maximum tensile stress direction, by a mechanism
that mainly relies on the opening of the micro-
cracks due to grain boundary sliding, or by a
combination of these mechanisms. The grain boundary
sliding mechanism of final failure has been
investigated by Tvergaard [12], in terms of

analyses for axisymmetric model problems with an
initial geometry as that shown in Fig. 3a. Various

sets of boundary conditions have been employed in
an attempt to model different microcrack densi-
ties, within the context of the relatively simple
axisymmetric model problem. These boundary condi-
tions shall not be explained here.

Fig. 10. Average logarithmic strains vs. time
during final failure by grain boundary sliding
(from [12]).

For one of the cases analysed Fig. 10 shows the

development of the macroscopic logarithmic strains

el and e2 in the axial and radial directions,
respectively, when o2/61 = 0.5 , and Fig. 11 shows

Fig. 11. Deformed meshes during final failure by
grain boundary sliding. (a) el = 0.010 . (b)

03B51 = 0.245 . (c) 03B51 = 0.414 . (d) 03B51 = 0.586
(from [12]).

the corresponding deformed meshes at four stages of
the computation. Based on a number of computations
of this type it was concluded in [12] that the
final separation by sliding may take a significant
part of the lifetime, particularly if the micro-
cracks are rather sparse. It is also noted that

separation by sliding is most likely to be
dominant if the relevant value of a,/LI is
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relatively large.
In the early stages, some of the cases analysed

in [12] can be considered analogous to creep con-
strained cavitation with all relevant facets

cavitated. It is noted that the very high overall
creep rates found in these cases confirm the high
creep rates found by Anderson and Rice [11] for

similar cases.

It should be emphasized that a plane strain
model analogous to the axisymmetric model studied
in [12] would give quite different results. For a
planar, hexagonal array of grains (Fig. 1), with
microcracks formed at all grain facets normal to
the maximum tensile stress, and with free sliding
at the remaining grain boundaries, separation by
sliding would occur immediately without any defor-
mation of the grains. The main reason for consider-
ing grains in the form of truncated cones [10,12]
or Wigner Seitz cells [11], is that these models

require an accommodating deformation mechanism
rather similar to that needed in an actual three-

dimensional array of grains.

5. APPROXIMATE CONSTITUTIVE EQUATIONS

The constitutive equations proposed by Tvergaard
[17] for a material subject to creep and grain
boundary cavitation are an extension of work by
Rice [16] and Hutchinson [18]. These investigations
rely on treating cavitating facets as penny-shaped
cracks in a power-law creeping material, and there-
fore the model does not account for the effect of

sliding on grain boundaries adjacent to the
cavitating facets. However, some relatively simple
modifications of this material model can give a
reasonable approximation of the sliding effects
[10].

Rice [16] has already suggested modifications of
his creep constrained cavitation model, based on

equilibrium considerations for a planar, hexagonal
array of grains with freely sliding grain bounda-
ries. Furthermore, he suggested that the inclined
sliding grain boundaries would act as an increased
effective radius of the cavitating facet, which is
equivalent to an increased rate of opening of the
micro-crack. Trie considerations in [16] for uni-

axial tension are easily generalized to a planar,
hexagonal array of grains subject to a multi-axial
stress state. However, the grains in an actual
three-dimensional array are more constrained

geometrically than the grains in a plane array,
and such stronger geometric constraints are
represented by the axisymmetric model Fig. 3a

considered in [10].
The modifications of the constitutive model are

guided partly by the proposals of Rice [16], and
partly by the stress distributions and crack open-
ing rates found in [10]. The macroscopic maximum
principal tensile stress in the direction normal
to the cavitating facet is denoted by S and the

components of a tensor mi. are defined so that

S = 03C3iJmij (i.e. mij 
= ninj where ni is the

facet normal in the current configuration). Now, a
constant ci is introduced to define two alterna-

tive stress measures

where 03C3m = 03C3kk/3 is the macroscopic mean stress, so

that S = 03C3ijmij for mij = mij +c1(3mij - Gij)/2 .
The stress measures S* and a: are assumed to

represent the normal stress and the mean stress,

respectively, at a facet that is not subject to
cavitation, and thus the local Mises stress

ae = ee is assumed unaffected by sliding. It is

noted that (5.1a) can also be expressed in terms oi

the stress deviator tensor s’3 , as

which reflects the fact that neither creep nor

grain boundary sliding of a polycrystal are affect-
ed by changes in the mean stress 6m , but that the
normal stress S* on the facet changes with 03C3m .

The behaviour of a cavitating facet in a
material with free grain boundary sliding is now
approximated by the expression corresponding to no
sliding, but for a crack subject to the modified
macroscopic principal stress values. Also, the
rate of opening of the crack is taken to be higher,
for which purpose another constant c2 is

introduced, to increase the amplitude of the rate
of crack opening expression

Then, the average rate of opening of the crack,
representing the cavitating facet, is approximated
by the expression

where R is the current radius of the facet. For

the value of 8, corresponding to a penny-shaped
crack, He and Hutchinson [25] have found the
following asymptotic expression

which is highly accurate for all n for

|S*/03C3*e| ~ 2 , but inaccurate in the high triaxia-
lity range for S /Ge larger than about 3 or 4 .

The average normal stress 03C3*n on the facet is

determined such that (5.4) is equal to (4.6) for

an average cavity, where the expressions (4.2) and

(4.3) for the volumetric growth-rates are based on
the modified stress values.

The modification of the expression (5.4) for

the rate of opening of a facet should also be in-
corporated in the expression for the macroscopic
creep strain rates used by Tvergaard [17]. Since
this expression is based on the results of
Hutchinson [18] and He and Hutchinson [25], the
modified expression is

where p* is given by (5.3b). The factor p

reflects the density of cavitating facets, and
Hutchinson [18] found

, ,

Here, R is the radius of the penny-shaped cracks,
and A is the number of cracks per unit volume.

Even in cases with no cavitation (i.e. 03B4 = 0
in (5.4) and thus 6n = S*) the free grain bounda-
ry sliding adds to the macroscopic creep strain-
rates, without affecting incompressibility. This
is analogous to the behaviour discussed in Section
3 of this paper [3,4], where essentially free
sliding adds to the creep rate at stress levels
below the transition range. In (5.6) this effect

is represented by the parameter y whereas in
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(3.2) the stress enhancement factor f is used. It

has been found in [10], for n = 5 , that y = 0.5

gives a good approximation of the numerical
results. Ghahremani [4] found a somewhat stronger
effect of free grain boundary sliding for n = 5 ;
but this was to be expected, since the axisymmetric
grains are more geometrically constrained against
sliding than the planar hexagonal grains studied in
[4].

It is noted that for ci = 0 , c2 
= 1 and

y = 0 the material description based on (5.4) and

(5.6) reduces to that obtained without grain boun-
dary sliding [17]. The numerical model studies with
free sliding in [10], representing well-separated
cavitating facets, are reasonably well approximated
by taking cl = 1 , c2 = 4 and y = 0.5 . The type
of approximation obtained by this set of parameters
is illustrated by the curves marked constitutive
model in Figs. 6 and 8. As already discussed in
Section 4 cavitation on all facets normal to the

maximum tensile stress gives very strongly increas-
ed overall strain rates. Overall creep rates of the

order of magnitude of those found in [11] for

closely-spaced cavitating facets are obtained by
using c1 

= 1 , c2 = 200 and y = 0.5 (taking
p = 0.75 for n = 5) .

The effect of multi-axial stress states on the

creep rupture times predicted by the material model
can be illustrated by drawing curves through points
in stress space that all correspond to a given
rupture time. Most experimental investigations have
considered plane stress states, and Hayhurst [26]
has drawn isochronous rupture loci based on a
number of such tests, comparing them with predic-
tions of continuum damage mechanics. For comparison
with such experimental curves Tvergaard [27] has
plotted a number of predictions of the material
model considered in the present section.

Plane stress isochronous rupture loci are shown
in Fig. 12 for three cases, in which the initial

Fig. 12. Isochronous rupture loci for plane stress,

Q3 = 0 . (a) No sliding. (b) Sliding with well-
separated cavitating facets. (c) Sliding with
closely-spaced cavitating facets (from [27]).

cavity distribution and the value of the diffusion
parameter are the same, specified by a,/b, = 0.1 ,
bj/Rj = 0.1 and a,/LN = 0.1 (where LN is a

nominal value, which appears by taking Ge equal
to the nominal stress oN in (4.4)). It is seen

that in Fig. 12a, where there is no grain boundary
sliding (c1 = 0 , c2 = 1 , 03B3 = 0) , the isochron-

ous rupture loci (solid curve) are located between

the Mises ellipse and the lines of constant maximum
tensile stress. The results in Fig. 12b and c

correspond to freely sliding grain boundaries, for

well-separated cavitating facets (c1 = 1 ,
c2 = 4, y = 0.5) and for closely-spaced cavitat-
ing facets (c1 = 1 , c2 

= 200 , y = 0.5) ,
respectively.

In equal biaxial tension, °1 = G2 , the results
found for grain boundary sliding in Fig. 12 are

rather different from those corresponding to no
sliding, since with sliding a stress level

significantly higher than ON is required to pre-
dict the same rupture time. The different

experimental results mentioned in [27] seem to

agree better with the shape of the rupture curve
shown in Fig. 12a than with the two other curves.

However, it is clear that also other models taking
into account grain boundary sliding predict rela-
tively larger lifetime in equal biaxial tension
than in uniaxial tension. Thus, Anderson and Rice

[11] would find the same type of dependence, with

cl = 0.67 in their alternative expression for the
rate of separation between two grains of a Wigner-
Seitz cell geometry. Also Cocks and Ashby [5] have
found rupture loci with shapes rather similar to
that in Fig. 12c, based on a model of grain boun-
dary sliding and purely diffusive cavity growth in
a planar array of grains. In conclusion, it

appears that isochronous rupture loci with an in-
creased stress level in biaxial tension should be

expected if there is free or nearly free grain
boundary sliding.
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