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RESUME - On présente une étude de synthèse de l’approche du mécanicien dans la modélisation
mécanique de la plasticité afin d’illustrer les concepts et les méthodes fondamentaux de la
description macroscopique des milieux continus. Cette approche possède des avantages incon-
testables concernant ses caractères systématiques et opérationnels. En plasticité classique,
la donnée des deux potentiels de l’énergie libre et du pseudo-potentiel de dissipation con-
duit aux modèles des matériaux standards généralisés. Les modèles usuels de plasticité par-
faite ou d’écrouissage isotrope et cinématique entrent dans cette description. Cette étude
est illustrée par une description de monocristal et par une analyse de bifurcation et de sta-
bilité. La technique de macro-homogénéisation est décrite en détail.

ABSTRACT - A review of the mechanical modelling of plasticity is given in order to illustrate
the preceding concepts and preceding methods of the mechanician in the macroscopic approach of
continuous continua. This approach presents uncontestable advantages concerning its systemati-
cal and operational characteristics. In classical plasticity, the expressions of the free ener-
gy density and of the pseudo-potential of dissipation lead to generalized standard models of
plasticity. Usual models of perfect plasticity or of isotropic and kinematic hardening can be
described in this unified presentation and are involved with internal parameters which are
plastic strains, plastic path length or plastic works. The analysis is illustrated by a des-
cription of single crystals and by an analyse of bifurcation and stability in quasi-static
evolution. The technique of macro-homogenization is underlined.
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1. INTRODUCTION

The objective of this communication is to give a
review of the mechanical modelling of plasticity.
This modelling illustrates the macroscopic pheno-
menological approach of anelasticity in relation
with thermodynamical considerations as it has been
sketched out in the previous paper by P. Germain.

2. MODELLING OF METAL PLASTICITY

The mechanical modelling of plasticity is an old
problem in Solid Mechanics. Basic ideas of plasti-
city as a feasible description of the behaviour of
common metals were introduced very early on,almost
at the same time as linear elasticity. But their
development as a satisfactory mathematical theory
only began with the fundamental works of Melan
(1936), Prager (1937), Mandel (1942), Hill (1950),
Drucker (1964), Koiter (1960), etc... Nowadays,
this description is widely accepted and successful-
ly applied in the resolution of pratical engineering
structural problems, in particular in relation with
numerical analysis by finite element discretization.

In the context of small strain, let us recall
first some of its+basic elements. The history de-
pendence Q = H {03B5 } of stress vs strain is conden-

sed via the present value of strain and ôf a set of
internal parameters a which represents the plastic
strain and eventually other material parameters 03B2,
a = (EP, 8). The variation of a corresponds to
irreversible évolution of the material. Principal
governing equations are :
- Stress-elastic strain relation :

- Plastic criterion :

- Evolution law :

Internal parameters a= (03B5p,03B2) follow a time-
independent incremental law :

where À denotes the plastic multiplication which
is such that 03BB  0 and 03BB f = 0.
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Equations (1), (2), (3) give completely the
stress-strain behaviour as an incremental law
j=j(é), 1,e, a hypoelastic behaviour.

Standard models of plasticity is obtained if

n(J,a) = ~f ~03C3, i.e. if the evolution of the plastic
strain is the normality law. In this case, the cri-
terion function f is also called the plastic poten-
tial and the preceding incremental relations j(é)
can be explicitely written as :

in the plastic region f(o,a) = 0.

The extension to the case of multiple plastic
potential has been introduced by Mandel (1965). If
the plastic criterion is given by n inequality
f1 (cr,a)  0, i = l,n then the associated evolution
law must be written as

Elastic plastic equations can be illustrated by
simple examples. The simplest one corresponds to
classical rheological models of springs and slides.
The following model :

shows clearly the significance of hardening modulus
h and represents an unidimensional representation
of the well-known Ziegler-Prager’s model of kinema-
tic hardening. Here, the internal parameter reduces
to the plastic strain eP and the plastic criterion
is written as :

3. STANDARD MODELS AND THERMODYNAMIC CONSIDERATIONS

However, the study of rheological models and of
usual models of plasticity shows that, in fact,the
incremental relations (4) are intimately related to
an energetic description since in these models the
notion of energy and dissipation are extremely
clear. For example, Ziegler-Prager’s model is rela-
ted to an reversible energy :

and the associated dissipation ils 1

Energetic considerations can be best studied in
a classical thermodynamic framework as shown by
Germain [1] and give rise to a general description
of anelastic behaviours of materials. The preceding
elastic plastic relations correspond to a particu-
lar case of the following thermodynamic description
based upon the two potentials : thermodynamic po-
tential and pseudo-potential of dissipation.
More precisely, in this framework, thé material
behaviour can be described by state variables (E,a)
with an associated free energy density W(E,a). If
irreversible stress is assumed to be excluded, the
associated forces are :

in isothermal process and the dissipation is

If a criterion is assumed concerning physically
admissible forces f(A)  0, the normality law is
again introduced : concernino the evolution of
state variables a :

In general, the set of admissible forces dépends
on the present state (s,a) and one should write
correctly f(A) = f [A ; c,al .

This modelization furnishes a general description
of a class of time independent anelastic behaviour
of materials such as plasticity, brittle damage and
brittle fracture. The reader may refer to [2] for a
more detailed presentation of the covered subjects.

Plost often, when there is no mechanical or physi-
cal confiquration change, the working assumption of
state independence of the criterion can be introdu-
ced. The obtained description correspondsthen tothe
qeneralized standard models (G.S.M.) [3] which are
characterized by the dependence of f on generalized
force A alone.

It is important to note that state variable (e,a)
can be of physical or mechanical nature. For example,
E and eP are mechanical variables since they are not
directly related to the physical state of the mate-
rial, while se = z- eP can be considered as a physi-
cal variable.

The G.S.M. models of plasticity [3] correspond to

thé particular cases with a= (eP, S), W(c,a) =
7 (s - eP) L (e eP) + Wa(03B5p,03B2). In the expression
of energy one can separate the elastic part We due
to elastic strain from the anelastic part Wa due to
different microscopic contributions by residual
stresses or internal structural changes, etc. Force
relations are :

The plastic criterion may be written as :

and the normality law as :

It is not difficult to verify that all 1 rheologi-
cal models composed of springs and slides are G.S.M.
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The Ziegler-Prager’s model of kinematic hardening is
G.S.M. as well as all models of combined kinematic
and isotropic hardening. A more interesting example
is given by Mandel’s description of single crystal
[4] : .

If N slip systems defined by the slip planes and
slip directions is assumed and ri denotes the ampli-
tude of slip of the i-th mecanism, the Kinematic
implies :

while Schmid’s law must be expressed as :

Theevolution equations are :

Mandel’s model of single crystal is G.S.M. Indeed,
state variables are a =(EP,r) with :

where the anelastic energy Wa(r) is obtained from
a by the relation gi - - aWa/ari when Mandel’s
assumption of symmetry of the interaction matrix
Hij = ag’/arK is satisfied, Hij = - a2Ha/ari arj.

Generalized force is A= (Q,g) and one obtains
effectively :

4. MACRO HOMOGENIZATION

The macroscopic behaviour of a material must result
from the underlyinq micromechanisms. In this section,
it will be assumed that continuum approach is still
applicable at the local scale and our purpose is to
give a riqourous discussion on the resulting global
behaviour when the local one and all the micro-
mechanisms are assumed to be known. Such a discus-
sion is usefull in the study of polycristalline
aggregates as well as in the study of composites.

The first part is devoted to homogenization pro-
cess of G.S.M. The principal obtained results cor-
respond to the fact that the overall behaviour is
also G.S.M. but involves an infini-te number of in-
ternal parameters.

Let us assume that the local behaviour corres-
ponds to G.S.M. If V denotes a representative volume
element, at each material point y of V, the material
is defined by constitutive equations (6), (7), (8).

It is useful to recall first that if  a &#x3E; deno-
tes the mean value of a physical quantity a,

then Hill’s lemma is satisfied for any local stress
and strain fields 0, E such that :

Hill’s lemma is expressed by the condition :

If Z and E denote the global stress and strain,
relations between s and E can be obtained via the
resolution of the localization problem which can be
written for periodic composites for example under
the following form :

a is qiven in V

o and e satisfy :

which is a purely elastic problem. If E is given
then the resolution of (15) gives Q = Q(E,a),
E = 03B5(E,) and thus Z =  Q (E,) &#x3E;. 

"

Let us verify that the overall behaviour is ef-
fectively G.S.M. The global energy density is
clearly

One obtains :

since  e r &#x3E; = 1 by définition from (15).

Generalized force field A associated to the in-
ternal parameter field a is by definition :

sinceo.e ôa &#x3E; = 0 from (15).
,a

The overall dissipation D is :

Normality law is globally conserved in the sense
that :

The overall behàviour is thus qiven by state va-
Niahles (E,a) where z is the local field of internal

parameters. Such a model is particularly comple"
because of the nature of a.

The second part of this section is devoted to the
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special case of elastoplasticity. The assumption of
linear elasticity enables us to perform a proper
analysis as it has been done by Suquet [5].

To simplify, the local behaviour is assumed to be
elastic-perfectly plastic (this is not a restriction,
one can also, for example, assume Mandel’s model of
single crystal). Governing equations are then :

State variable (c,cp )
w = 1 2 (03B5-03B5p) L (03B5-03B5p) Energy

(19) 
c = ~W ~03B5 = L (e- 03B5p) Forces

A = - aW _ o , f(03C3)  0
aEp

03B5p = 03BB ~f ~03C3 , 0 f = 0 Normality .

State variable (e,ep )
W = 1 2 (03B5-03B5p) L (03B5-03B5p) Energy

(19) 
J = # = L (E:- F-P) Forces

A = - ~W = 03C3 , , f(Q) a 0
aEp

03B5p = 03BB ~f ~03C3 , 0 f = 0 Normality.

In this case, the localization prob1em(7r) car:!.’e
explicitly written as :

This is a linear elastic problem with residual
strain and appropriated boundary conditions. It is
then interesting to introduce the following decom-
positions of stress and strain

- Strain deformation : e = e + z with :

- Stress decomposition cr = s + r with :

The significance of e and z follows from (21),
(22). It is clear that e = D. E where D denotes
the linear operation of strain concentration and
z = Z. eP where Z denotes e linear operator of
strain incompatibility. From (23), (24), it is
also clear that s = C . 03A3, where C denotes the li-
near operator of stress concentration and r= R. F-P
where R denotes the linear operator of stress in-

compatibility. Note that C and D are classical

operators in the study of inhomogeneous elastic
aggregates and Z and R are also wellknown in the
mathematical theory of dislocation. operator Z

générâtes the strain response from a given incom-
patibility and operator R generates the stress res-
ponse resulting from a given incompatibility.

As before, it is clear that the overall beha-
viour is G.S.M. with the state variables (E,ep).
Our objective here is to introduce the overall
plastic strain EP as a mechanical variable and toprove that the set (E,EP,cP) can be also chozen as
state variables to derivéagain a G.S.M. as overall
behaviour.

The macro plastic strain EP can be introduced
in a natural way by elastic unloading, thus by de-
finition :

where F denotes the overall modulus. From the de-
composition c = e + z, one obtains :

F rom H; 11 1 s 1 emma  p &#x3E; =  D T p &#x3E; ; if p is S.A.,
thus the second member can also be written as
-DTL (Z-I) Ep&#x3E;=-LCT (Z-I) eP &#x3E; since
C L = L D. Finally :

0r  CT Z EP &#x3E; = 0 because CT is S.A. and Z eP C.A.
and  Z eP &#x3E; = 0. It follows that :

this relation has been obtained by Mandel [4] since
1964.

Now let us start with state variables (E,Ep,p)
with enerqy density : 

z

If ôE, 6EP, 6cP are arbitrary variations of the
state variables,"compatible with the constraint
(21), then one obtains :

Relation (29) shows clearly that s=- W E and
03A3 and r are respectively the associated forces of

EP and-cp, thus generalized force associated toEP is the residual stress field r.
The plastic condition is expressed by multiple
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plastic potential f(03C3(y))  0, y E V or, in func-
ti on of generalized forces, f(C.s+r)L0 ,v y E V. Normality law 03B5p = 03BB af/aa 1 eaâs to :

which proves that the overall behaviour is ef-
fectively G.S.M.

Remanh : The preceding result is well known in
other contexts of Solid Mechanics and actually
adopted for practical applications. For example,
the constitutive equation of elastic plasticshells
is described by a G.S.M. which can be derived from
a reduction of the three-dimensional problem to a

bidimensional one [7], [8].
If Y, X denotes respectively the plane extension

and curvature tensor, state variables for a shell
element are (Y,X,Yp,Xp,Ep(z), zE [-h/2, h/2]) with
energy W = We(Y-Yp, X-XP) + Ka§jgP). Generalized
forces associated to yP, ~p, p are respectively
N, M, r the in-plane force, moment tensor and re-
sidual stress distribution along the thickness of
the shell element. 

z

5. SOME GENERAL RESULTS ON SYSTEM BEHAVIOUR

In the preceding analysis, a cell element is in
fact a structure in the sense of engineering struc-
tures and it may be then interesting to recall here
some general results concerning the behaviour of a
solid undergoing quasistatic transformation in
response to a given loading path. The constitutive
equations are assumed to be elastic plastic with
energy W(c,OE), forces o = aW/ae, A= - aW/aa, plas-
tic criterion f1(A,03B5,03B1)  0, i= 1,N and normality
law. The quasi-static evolution under a prescribed
loading path of this solid has been discussed in
the early works of Melan (1935), Prager (1937),
Greenberg (1949), Hill (1950), Koiter (1960)... at
least in small transformation. Its extension to
finite strain has been introduced by Hill, [8]
Halphen, [9], etc...

The analysis of the quasi-static response is ba-
sed essentially on the formulation of the rate pro-
blem which gives the incremental response with
respect to a load increment when the present state
is assumed to be known.

To simplify the presentation, only surface for-
ces F are prescribed on the boundary S of the so-
lid S2. Equilibrium equations and plastic equations

after time differentiation, lead to :

Equations (31) can also be written under the
form of a variational inequality which is :

For example, these conditions are fulfilled in the
G.S.M. description.

The fact that equations (31) can be associated
with a symmetric variational inequality enables us
to derive an equivalent formulation of the rate
problem as the stationnarity of a rate functional.
For G.S.M., t e associate variational inequality
can be explicitely written as :

where E denotes the total potential energy of the
system :

UU J

and N the admissible rate of a, V the admissible
rate of u.

The associated rate functional U(u,03B1) is :

As it has been shown out by Hill [8], the des-
cription of the rate problem furnishes interesting
results concerning global behaviour such as the
stability of the present state and the possibility
of bifurcation of the response from a trivial one.

In the G.S.M. formalism, these statements depend
essentially on the positivity of the second deriva-
tive of energy : 

-

Namely, the stability of the present state can be
characterized by the positivity of E" on the set
B1 x N.

On the other hand, the positivity of E" on the
set V x N where N denotes the vectorial space gene-
rated by N characterizes the uniqueness of the rate
response and ensures no possible bifurcation of the
response from a trivial one. The reader may also
refer to [10] for a more detailed discussion on sta-
bilitv and bifurcation.

6. PHYSICAL INTERPRETATION-PRINCIPAL DIFFICULTY

Research on the physical basis of the introduced mo-
dels has been considered since the early days of
Plasticity. If the underlying mecanisms are now well
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understood, a quantified description to obtain trom
microscopic physical mecanisms the nature of inter-
nal parameters a and the foundation of the macrosco-
pic plastic criterion still remains an open problem.
Knowledge obtained in Physics of Solid in the domain
of plastic deformation of single crystal cannot, at
the present time, be simply transcript to obtain a
simple and operational modelling of polycrystal.

In fact, macro-homogenization technique as shown
in paragraph 4. gives theoretically the answer to
obtain the overall behaviour. ts complexity is the
major difficulty to be effectively adopted in the
resolution of engineering problem. It is necessary
to introduced some approximations, for example the
self consistent models [11] may be used in certain
situations.

However, it is clear that the progress obtained
in the description of single crystal at finite
strain, cf. Asaro [12] for example, furnishes prin-
cipal results in the mechanical description of fi-
nite strain (Mandel, [13] ; Stolz, [14]) and sug-
gests some macroscopic models to be developped for
polycrystal aggregates.
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