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Basic concepts of the approach by continuum mechanics

P. Germain

Laboratoire de Mécanique Théorique, Université Pierre et Marie Curie, 75005 Paris, France

(Reçu le 26 mai 1987, accepté le 22 janvier 1988)

RESUME - On m’a demandé pour initier cette réunion de scientifiques de diverses disciplines, destinée
à comprendre les mécanismes de la plasticité, de rappeler les points de départ, les méthodes et les

objectifs de l’approche mécanique.

ABSTRACT - I have been asked, at the beginning of this meeting of scientists of various disciplines
which is devoted to the understanding and to the mastering of the mechanisms of plasticity, to recall

the starting points, the methods and objectives of the approach from mechanics.

Revue Phys. Appl. 23 (1988) 319-323 AVRIL 1988,
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I. The Laws of the interactions

I.1. Kinematical description

Mechanics wants to give a continuation of the geome-

trical representation in order to explain and to

Dredict the motion -or the equilibrium- of bodies

and structures subjected to various physical or che-

mical interactions. Anv body B may be viewed as a

set of element M, usually assumed to be a continuous

set, provided the number of these elements is great

and their mutual distances small. Mechanics, namely,

always tries to start with the most simple represen-

tation in order to go as far as possible into the

mredictions. At each time t , one is looking for the

displacement field X(t) of the various elements ofB.

Usually M is a point and X the field of the displa-

cement vector X(M,t) from a reference configuration

(Lagrange). But sometimes the element M has to be

considered -say- as the schematization of a rigid

body (micropolar continuum). The field X is then the
field X(t) generated not only by a displacement vec-

tor but also by an orthogonal tensor which gives the

orientation of the rigid bodies. As it is well known,

one may recover X(t) from the "velocity" field U

(Euler) of the U(M,t) which defines the "velocity"

of the element M.

1.2. Mechanical interactions

The most natural way to define mechanical actions on

REVUE DE PHYSIQUE APPLIQUÉE. - T. 23, N° 4, AVRIL 1988

a body B -the decisive and completely new concept on

which classical mechanics is based- is to say how

this body reacts under this action for various kind

of instantaneous small motions -one raises a little

bit a suitcase if one whishes to evaluate its weiaht,

one moves a little bit the belt of the ventilator of

a car in order to see if it is conveniently stressed.

In mathematical words, if U is a (virtual) velocity

field, defined on B at time t, as an element of a

vector space of virtual motions V, the mechanical

actions of a system S on B may be defined, for this

class of v.m. V, by its virtual power -a real num-

ber : P = L (U) ( 1 )

where L is a linear and continuous function on V.

As a consequence, if B is a finite set of points

these actions are defined by a vector field on B,

i.e. by forces. One recovers the Newton’s descrip-

tion, usually adopted by physicists. Vector fiêlds

give namely a quite convenaient represent’ation ouf thé

mechanical actions of a system S on a body B ; but

mutual mechanical interactions inside B -stresses-

are not represented by vector fields, but by a sca-

lar field in a fluid in equilibrium or a field of

symmetric second order tensors in classical conti-

nuum mechanics.

The definition (1) provides in any case the best

way to introduce the definition of stresses. It
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rests on the objectivity statement which says that

mutual mechanical interactions must be invariant by

any change of referential frame. Then, in (1), the

ingredients coming from U must be objective quanti-

ties D, say
-1’B,

In classical continuum mechanics D = (~U)S, the sy-
metric part of the virtual velocity qradient. Then

the stress field Cr appears as the dual quantity of
D. More precisely (1) may be written

if P(i), is the virtual power of the mutual interac-

tions. One checks immediately that, in classical

contiunuum mechanics, a is the field of stress ten-

sor 6. In this case, - P(i) is namely the volume in-

gral of the trace of the product of the matrices U

and N :

The fundamental statement of statics say that in anv

gallican frame, the nower of the external force F

(exerted on B by systems exterior to B) - say p(e)
and of internal forces - say P(i) - is aiways null.
Accordingly :

whatever be Û in(/. Then, if 0* is the adjoint opera-

tar of 0394 in (2),

represents the equations of equilibrium. Jlhe main

results, whose derivations has been outlined above,

may be condensed in the followina sketch :

1.3. Thermomechanical interactions and other

interactions

Usually other interactions than the mechanical ones

have to be taken into account in order to study the

motion -or the equilibrium- of a body. The most com-

mun ones are the thermomechanical interactions. The

basic statement here is the conservation of enerqv,

a natural extension of the first law of thermosta-

tics, which says that for any closed body, the time

derivation of the sum of the internal enerqv and of

the kinetic enerqy is equal to the power of exterior

forces P and of the rate of heat received bv the
e

bodv. Usiner the theorem of mechanics on kinetic ener-

5y, one can qet rid of this enerqy as well as of

?(_)r , and ohtain locallv :

where e is the specific internal enerqy (per unit

mass), e, the rate of e, É: (i) , 
the power due to in-

ternal stresses p.u.m., e the heat rate receveid
by the element M and n.u.m., in particular due to

thermal conduction onlv if, as usually, radiative

heat is neglected. In classical mechanics (see (4)),

if p is the volumic mass (p.u.v.) :

if q is the heat flux vector.

Various physical and chemical interactions, be-

yond thermomechanical ones, may have to be taken in-

to account. Electromaqnetic phenomena occur in ma-

gneto-fluid dynamics or in piezoelectricty ; opto-

mechanics is a new field with some interesting ap-

plications, multiphasic flows, flows of dissociated

fluids or ionized fluids, motions of reactive media

are typical examples of cases which require the in-

troduction of other convenient physical or chemical

laws in order to have, with the basic equations of

motion or of equilibrium, the necessary basis for

studyinq the motions or equilibrium of the bodies

which are subjected to such phenomena.

The choice of the basic laws which are assumedto

give a sufficentlv accurate descrintion of the phe-

nomena involved -in particular the choice of the

representation of stresses and forces as qiven in

(6), i.e. the choice of u and of 6- defines the ba-

sic équations (and conseauentlv the refinement) of

the theory which will be applied for the anplica-

tions one has in mind. They are sometimes called

the universal equations because, to a larqe extent,

they are independant of the properties of the mate-

rials involved.

II. The thermodynamical frame of constitutive equa-

tions.

It is auite clear that the laws of the basic laws of

the various interactions to which the body is sub-

jected must be completed by the knowledae of the

properties of the material of B itself. In a mecha-

nical representation, this knowledae is schematized

in the constitutive laws. To discover the aeneral

properties of these laws, the snecial ones they

have to fulfil for each class of materials and the

special inaredients that have to be taken into ac-

count eor the material of a bodv deformed under a
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narticular type o‘ loading, has been one the main

task of continuum mechanics these last forty years

and the field of some of its more spectacular

achievments.

These laws qive the various quantities which

rule the transfers inside the body B - momentum

transfer (stress tensor) ; heat transfer (heat

’lux vector) etc...

It has been recoqnized at the early staaes of

the study of constituve laws that they must be

objective (Drinciole of material indifference) and

that at time t thev must dépend only of the past

historv un to time t (nrincinle of causality).

Twentv vears afro it becomes clear, for rnost of the

neonle working in this field, that classical (or

nhenomenoloc,ica3) thermodynamics is the discipline

which may provide a good conceptual frame for the

formulation of constitutive equations. One will fol-

low in the present review the so-called "local ac-

companying state" (l.a.s.) approach.

Let us note, to begin with, that the power in

(8) can always be written

where ô is the material derivative of a quantité
which represents the deformation and c the stress

representation conjugate to 03B4 ; the (. , .) is as

usual the canonical bilinear form. In the classical

small perturbation theorv (s.p.t.), 0 is simply C,

the s.p.t. deformation matrix and pc is the stress

matrix u ; for finite deformation, one may take for

6 the Green - Lagrange deformation tensor and then

c is proportionnal to the symmetric Piola-Kirchhoff

stress tensor.

II.1. Elastic or perfect materials

One assumes that to any particule, one may associate

a thermodynamical homoqeneous system of unit mass

whose states may be described by the variable 6 and

s - a specific entropy. The reversible evolutionsof

this system are assumed to be ruled by the thermody-

namical potentiel and the first law of thermodyna-

mics for this system gives exactly the same equa-

tion as (8), then

consequently

This assumption gives the possibility to define for

any particule of B the specific entropy s, the ab-

solute temnerature T and to obtain the équations of

state (12). of course, one mav choose another ther-

modynamical notentiel for 0escribinn the l.a.s.,

for instance the specific freee enerqy 03C8(03B4,T). Then

(12) is replaced by

It is easily checked that for an isothermal evolu-

tion (T constant), (13)1 1 qives the full constitutive

equations and for an adiabatic evolution, as (9) and

(11) show that s remains constant, equation (12)

gives the full constitutive equations.

Note that for a perfectfluid 6 may be taken sim-

Dly as the specific volume T , c is then - p, with

p the pressure.

II.2. Anelastic materials

One restricts the analysis to the following situa-

tion. To any particule of B, one assumes that one

may associate a thermodynamical system of unit mass

whose states may be described by the variables 03B4

and s, as above, but also by a set of internal va-

riables a. The reversible evolution of this system

are ruled by a potential e(Ô,s,a) for which the

first law is written

where e is exactly the same as in (8). As a result,

one mav write the equations of state (E.S.)

in a form which qeneralizes (12) or in another one,

with the specific freee enerqy, in a form which qe-

neralizes (13). Moreover

It then appears that the real evolutions of the

particle cannot be considered to be reversible even

if the evolutions of the (fictitious) l.a.s. are.

Horeover the equations of state (15) don’t provide

the full consitutive equations. They must be com-

nleted by some complementary constitutive equations

(C.C.E.). The fundamental inequality of thermody-

namics applied to the l.a.s. as given by Clausiuq-

Duhem inequality (in order to eliminate every in-

fluence of external effects) which rrlaV be written wlth

Eth given by (9) and with pA = A : "

Here (A,a) is the intrinsic dissipation p.u.v.

which is due to the irreversible properties of in-

ternal power of stresses E(i) - 03C9(i) ; -q * is the
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thermal dissipation p.u.v., due to the heat trans-

fer exchanges in a nonhomogeneous temperature field.

The C.C.E., one is lookinq for, must generate ther-

modvnamical admissible processes, thàt means pro-

cesses for which (17) is always verified.

One usually write a Fourier law for heat conduc-

tion :

where K is a symmetric second order tensor positive

definite, a law which rules the thermal dissipation.

For the intrinsic one, one may assume a aeneral evolu-

tion équation like :

But very often, it is possible to express à as a

gradient (or a subgradient) of a pseudopotential of

dissipation (9*(A) - which may also depend of some

thermodynamical variable or A as a 9radinent of a

pseudo-potential 0(a)

*
with t!) and ~ two dual convex functions with

~*(o) = ~A~*(o) = 0. One then says that the dissina-

tion is normal or that the materials is standard.

All processes for such a standard material whose

C.C.E. are given by (18) and (20) are thermodvnami-

cally admissible.

Let us emphasize that the above analysis gives

an interesting frame for writing constitutive equa-

tions. If, for instance, the standard material mo-

del may be adopted,one has to define the internal

variables, to find the free energy $ , , or equiva-

lenty the equations of state, to find the pseudo-

votential (.0 (A) . If such a program may be fulfilled,

one may hope to be able to formulate well-posed ma-

thematical problems in order to find the behaviorof

B, to study their solutions together with their evo-

lution and their stability for various data. One

will be able then to test the validity of the model,

i.e. its camacity to explain various experimentally

observed phenomena and to give quantitative evalua-

tions which may be compared to measurements.

III. Continuous materials mechanical representation.

The paper of Nguyen Quoc Son will review typical

examples of usual anelastic behaviours and will

show that results recently achieved prove how suc-

cessfull is already the approach which has just

’oeen outl_inec’. But it remains that the mechanician

is conti nously ’::aced B’lith the necessity to q more

deeply inside the physics of the phenomena in order

to find a realistic phenomenological description or

the material involved in the structure he wants to

study.

Let us mention a first answer with the use of

rheological models for writing formally constituti-

ve laws with some internal variables -which were

often called "hidden variables" to underline that

no direct physical significance was attached to

them. For example, viscoelastic materials or perfec-

tly elasto-plastic materials may be described as

standard materials with a function q0 in (20) which

is polynomial of degree 2 for the former and degree
1 ’or the latter. The précise form of this function

has to be obtained by "identification" of the re-

sults oiven bv the model with expérimental results.

^his process is sometimes still useful but cannot

be considered to fulfil the requirements ov a good

Mechanical renresentation. It is orecisely the pur-

nose of this meeting to recoanize the basic mecha-

nims of Diasticity with the hone that they may be

-,,’--en into account in a reasonable wav in the cons-

stitutive laws. Tao build such continuous models

which mai be used by mechanicians for their studies

ol structures and which reflect in some respect the

,properties discovered by physicists or metalluraists

is the main objective of what may be called the me-

chanic of continous materials. Let us close this

introductory talk by some remarks.

111.1. Material invariance of oerfectly elastic

materials

The first one will stretch what can be called the

material invariance of perfectly elastic materials. As

it is well known the thermodynamical potential -say

the specific free energy for an isothermal evolu-

tion- is a convex (or more generally polyconvex)

function. A regular problem for the equilibrium of

a structure may be formulated as a variational pro-

blem which gives rise to a solution which may be

looked as a function of the data -in general surfa-

ce forces or displacements on the boundary. A global

Dotential may be defined namely for the whole struc-

ture and the generalized Castigliano theorem tells

that for a qiven structure in equilibrium, global

notentials may be defined which may be derive from

one of them by Legendre transforms (and consequen-

tly by couples of dual quantities) in the same way

that specific thermodynamical potentials at each

particle may be defined from one of them by Legendre
transforms, the dual quantities at these levels
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being stress tensors and deformation tensors. This

very well known property, which illustrates why

classical thermodynamics may be formulated in a

quite abstract and general way, has many important

consequences. One of them is the possibility to

schematize a highly non-homogeneous elastic body by

another one with smoother properties by some process

of homogeneization : the local properties at one

’’point" of the homogeneized body (macroscopic level)

are the global properties of a "cell" which, at the

microscopic level, has to be looked as an elastic

continuum. It is the fundamental material invariance

for perfectly elastic materials through the passage

micro-macro.

111.2. Identifiable geometrical or physical in-

ternal variables

The crucial difficulty in writing constitutive

equations for anelastic materials is to choose the

internal variables. In some cases, that can be done

easily. It is possible, for instance, to write the

global potential of an elastic structure with some

well defined cracks : the geometrical shape appears

as a (global) internal variable. In particular the

dual quantity of the length of a rectilinear crack

in a 2-dimensional elastic body is related to the

stress concentration factor at the head of the crac

and the propagation law of the crack may be given

by a convenient pseudo-potential. The mechanics of

the monocristal gives an example of a hysical iden-

tifiable internal variable : the orthogonal tensor

which gives the orientation of the crystallographic

frame is conveniently introduced for the study of

the elastoplastic monocrystal. This is the best

example of what may be called quite qenerally a

reactualized natural configuration, a concept which

has been found quite useful in elastoplasticity at

finite deformation where it is called the relaxed

configuration. Even if such a choice of an internal

variable is agreed, difficulties and controversial

arguments may still arise when it must be decided

how to compute time derivatives with respect to

such a frame.

111.3. Micro-Macro mechanics

In general, one cannot hope to find a qood repre-

sentation of solid materials without takinq account

of the main physical phenomena. But solid materials

are very often highly heterogeneous and, moreover,

the mechanisms which rule the behaviour of the ma-

terial are related to a very small scale. At the

présent time, it i8 not possible to take a direct

accdunt on a very satisfactory way of these physical
nechanisms identifiable at such a scale. Then, the

microscale of the mechanician is still a macroscale

for the solid state physicist. As a first conse-

quence, one must not forget that the internal va-

riables introduced in II.2 are in fact global varia-

bles for the microscopic description and more pre-

cisely those with a characteristic time of evolution

comparable to the kinematic characteristic time of

the particule - the others are either frozen or have

their equilibrium value. As a second consequence,
one must quite often be satisfied by some crude as-

sumption at the microscopic level. In the localiza-

tion - homogeneization scheme, one defines a rea-

sonable model for the microcell and one derives the

macroscopic behaviour with some further hypothesis,

either on a statistical distribution or on a pseudo-

periodicity property of the microcells. In the self-

consistent scheme, the mechanical interactions bet-

ween a microcell and all adjacent ones are approxi-

mated by the interaction between this constituent

and the equivalent homogeneous material whose beha-

viour is unknown. Performing this operation for

each microcell, the unknown behaviour may be calcu-

lated by an averaging process.

Conclusion

This very short survey of some recent attempts or

progress in the continuum mechanics of materials

show how far we are still from a theory which will

be able to incoporate the mechanisms of plasticity

cliscovered by the solid state physicist into a con-

tinuum theory which will be able to answer all the

questions of the mechanical engineer. If one is

tempted to be discouraged by the size of the gap,

one has to look back to the last two decades in or-

der to note the very significant progress made by

the continuum approach for facing the challenge

that represents a full scientific understanding and

representation of the behaviour of anelastic struc-

tures.


