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Physical interpretation of the rheological behaviour of amorphous
polymers through the glass transition

J. Perez, J. Y. Cavaille, S. Etienne and C. Jourdan

Groupes d’Etudes de Métallurgie Physique et de Physique des Matériaux, U. A. CNRS 341, I.N.S.A.,
69621 Villeurbanne Cedex, France

(Reçu le 8 octobre 1986, révisé le 14 août 1987 et le 23 novembre 1987, accepté le 24 novembre 1987)

Résumé. 2014 Ce travail a pour objectif de décrire le comportement mécanique des polymères amorphes soumis
à une sollicitation cyclique au voisinage de la transition vitreuse (relaxation a). A cette fin, une théorie de la
déformation non élastique est établie à partir d’un modèle de mobilité moléculaire. La structure du polymère
amorphe est assimilée à un empilement compact de monomères dans lequel se trouvent des sites de désordre
caractérisés par un excès d’enthalpie et d’entropie. Ces sites, appelés « défauts », sont dénombrés par un calcul
thermodynamique usuel en métallurgie physique. On voit ensuite comment l’application d’une contrainte
donne naissance, sur les sites de moindre résistance, à des microdomaines cisaillés (Mdc) qui sont à l’origine de
la déformation non élastique. Celle-ci comporte deux termes : l’un anélastique (réversible) dû à la formation
des Smd et associé au temps 03C41, l’autre viscoplastique (non réversible) dû à la propagation des Smd et associé
au temps 03C42. Les temps 03C41 et 03C42 sont reliés à un temps unique 03C4max, par l’application du concept de
hiérarchisation des mouvements corrélés récemment introduit par Palmer et al. On obtient finalement les
modules dynamiques G’, G" et tan ~. Tous les paramètres sont accessibles à la mesure et ont un sens physique
précis : densité de défauts Cd, temps caractéristique 03C4mr associé à 03C4max ~ 03C4mol qui est un temps de diffusion
monomérique et deux coefficients h et k exprimant l’intensité des effets de corrélation existant d’une part lors
des mouvements moléculaires initiaux (expansion réversible des Mdc) et d’autre part lors des mouvements à
plus longue distance (recombinaison des lignes bordant les Mdc). Des comparaisons sont faites avec des
résultats expérimentaux, montrant la détermination des différents paramètres physiques. Ainsi, cette théorie
rend compte aussi bien des valeurs élevées (et variables avec T) de l’énergie d’activation apparente du pic a,
que des lois exponentielles étendues (Kohlrausch ou Williams-Watt) décrivant le même pic.

Abstract. 2014 The purpose of the present work is to predict, from physical bases, the mechanical behaviour of
amorphous polymers resulting from the application of a periodic stress through the glass transition range (a
relaxation). A theory of the non elastic deformation is developed from a model of molecular mobility. The
amorphous polymer is described in terms of a close packing of monomers in which there are sites

corresponding to density fluctuations : these sites, exhibit an excess of enthalpy (and entropy) and are here-
after called « defects ». The concentration of defects is calculated from thermodynamic arguments usual in
physical metallurgy. The application of a stress results in the nucleation of shear-microdomains (Smd) around
the defects where the resistance to shear is weaker. Thus, the non elastic deformation has two components :
one is anelastic due to the nucleation of the Smd (characteristic time 03C41), the other is viscoplastic due to the
expansion of the Smd until annihilation of the line bordering them (time 03C42). Both 03C41 and 03C42 are related to a

unique characteristic time 03C4max thanks to the application of the hierarchical (or series) correlation concept
introduced earlier by Palmer et al. The dynamic modulus (G’ and G") and tan ~ are calculated. The

parameters appearing in the equations thus obtained can be known from independent experimental ways and
all have a precise physical meaning : the concentration of defects Cd, the mechanical relaxation time

03C4mr linked to 03C4max ~ 03C4mol which is a life time for monomer diffusion and two coefficients, k and h, indicating the
effectiveness of correlation effects existing, on the one hand, during preliminary molecular movements
(reversible expansion of Smd) and, on the other hand, during longer distance movements implying the
annihilation of lines bordering the Smd. After determining the different physical parameters the comparison
between theoretical and experimental results is made. Thus the physical origin of stretched exponentials
(Kohlrausch or Williams-Watt’s equation) as well as the high values of the apparent activation energy (which,
moreover depend on T) can be explained.
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1. Introduction.

There have been numerous investigations on the
viscoelastic properties of amorphous polymers [1-3]
and two temperature ranges can be distinguished.

i) At T &#x3E; Tg (rubbery state), the behaviour of the
material is explained in terms of entropic elasticity
and chain reptation [4]. Beyond a critical length,
chains are entangled. After an observation time

texp &#x3E; Te, the properties of the system depend on the
fluctuations of the entanglement lattice : hence

Te is the relaxation time due to the loss of entangle-
ment of chains (Te = ~0/Gc with ~0 : zero stress

viscosity and Cc : rubbery modulus.
ii) At T  Tg (glassy state), the cohesion of

amorphous polymer is mainly due to intermolecular
interaction : each monomer is linked not only to
monomers of the same chain but to neighbouring
monomers constituting a matrix surrounding it.

Hence, the main obstacles to conformation changes
are energy barriers reflecting the interaction between
each monomer and the surrounding matrix.

Between those both ranges, the glass transition
occurs and the corresponding viscoelastic properties
are generally described with the equations of rheolo-
gy. Nevertheless such an approach is

phenomenological and implies a great number of
parameters in terms of relaxation spectrum H(T ) (or
retardation spectrum L()) which is not easily
related to physical concepts. Although these proper-
ties depend obviously on the molecular mobility,
they are not easily related to microstructural par-
ameters. In a previous work [5] an attempt was made
in order to interpret on physical bases the behaviour
of amorphous polymers in the glass temperature
range. In such a model, the concept of « defect » was
introduced. The rheological properties were con-
sidered as resulting from the nucleation of shear-
microdomains (Smd) in these defects (time 1)
followed by the stress induced diffusional expansion
of Smd until the lines bordering two neighbouring
Smd are annihilated (time T2). Using the concept of
hierarchically correlated molecular movement, it is
now possible to relate both phenomena to a unique
characteristic time having a physical meaning and
easy to obtain experimentally [6].

Thus, the purpose of this paper is to introduce this
concept of correlated molecular movement into the

theory quoted above [5] and to obtain a complete
physical description of the rheological properties of
amorphous polymers.

2. Physical basis (summary).

In reference [5], the physical bases of the interpre-
tation of the rheological behaviour of amorphous
polymers around Tg were given and only a summary
will be presented here.

2.1 MICROSTRUCTURAL ASPECT AND MOLECULAR
MOBILITY (assumption 1). - The polymer can be
considered as a close packing of monomers whose
rigidity is largely dominated by the intermolecular
forces but some disordered sites may exist. At

T &#x3E; Tg, these sites are continuously redistributed

due to thermal fluctuations but at T  Tg, they are
frozen. Such sites, in concentration Cd, will be
hereafter called « defects ».

In order to calculate Cd, it is assumed that there
are two types of monomers :

i) Those (in number NA - Nd) forming a close
packing with their neighbours thus presenting the
lowest level of inter and intramolecular bonds

(NA : Avogadro’s number).
ii) Those (in number Nd) forming with their first

neighbours a more disordered packing, thus having
an increment of free enthalpy :

with AHF : enthalpy increment due to broken Van
der Waals bonds and excited intramolecular bonds ;
ASF is the entropy increment related to the different
possible states of intramolecular bonds i.e. the

entropy of formation of a defect.

The number Nd (i.e. Cd = NDINA) is obtained by
minimizing the function :

with 0394SM = kB Log (NA!/((NA - Nd)! Nd!)) : en-
tropy of mixing Nd defects among NA positions.
At T &#x3E; Tg, the material is in a metastable equilib-

rium so that a Boltzmann distribution can be con-
sidered and we obtain :

Such an approach is useful as it is possible to relate
AHF and ASF to the value of Tg and 0394Cp =
Cp (liquid) - Cp (glass). For instance, it was found
[5] AHF = 0.114 eV ; ASF = 2.32 kB and 0394HF =
0.060 eV ; ASF = 2.30 kB in the cases of amorphous
selenium and polybutadiene respectively. The vari-
ation of Cd with temperature has also been given
(Ref. [5], Fig. 3).

Molecular movements obviously occur in these

defects. Recalling Adam and Gibbs’ theory [7], the
probability for a transition from a configuration to
another, is given by :

with Z* = S*NA/0394S(T) : number of monomers
constituting the region where a cooperative move-
ment occurs (S* minimum configuration entropy
necessary for such a transition ; Ag : height of the
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energy barrier related to this transition ; AS(T) :
molar excess entropy of the disordered matter).
By assuming that the excess entropy is included in

defects, it is possible to identify AS (T) to

àSF . NA. Cd and one has :

Taking 039403BC * = Ag S*/0394SF, we can calculate the
lifetime for an elementary monomer movement :

and the monomeric diffusion coefficient :

with v o = 1/0 = kB Tlhp ; k: mean distance of
displacement of a monomer during an elementary
process of diffusion.

It happens that these equations are similar to
those of Adam and Gibbs [7], Cd being the order
parameter instead of AS(T), both being linearly
connected.

Thus, at T &#x3E; Tg, there are entropy fluctuations
and monomers are alternatively either close-packed
or forming disordered regions with their neighbours,
i.e. defects. At T  Tg, those defects are frozen

leading to local zones of high molecular mobility or
« islands of mobility » [8].

2.2 NON ELASTIC DEFORMATION OF AMORPHOUS
POLYMERS AT HIGH TEMPERATURE (T  0.7 Tg) (as-
sumption 2). - We have proposed previously [9-11]
that the basic deformation mechanism in amorphous
solids, is the nucleation of shear microdomains

(Smd). The nucleation occurs under the effect of the
applied stress and is thermally assisted. A general
case of Smd has been illustrated as follows : as shear
initiates along a planar surface S, a cooperative
atomic rearrangement occurs on both sides, inside a
volume bounded by the curved surface 03A3. The

intersection between 03A3 and S defines the curve

Cn which separates the part S, of S where shear has
occured from the non sheared part of S. In mechanics
of continuous media, the line en is a dislocation

loop ; in amorphous solids, dislocations, as far as
this concept is valid, would be of the Somigliana type
[11]. Some nucleation rate has been calculated by
several authors but the results appear to be unrealis-
tic as such a nucleation can occur only in regions
where resistance to shear is appreciably weaker than
in the rest of the material. Such soft sites may be

regarded as the « defects » evoked above. The

thermomechanical activation of a defect (mean time
1) may lead to the formation of a Smd. When the
stress is removed, the solid recovers its previous
configuration, and this corresponds to the anelastic
behaviour. In order to obtain plastic deformation,
the growth of the Smd must be necessarily invoked.

But the line C. being a Somigliana dislocation i.e. a
sessile defect, such a growth needs a diffusional
mechanism. This growth covers a distance (mean
time T 2) at which the line C fi loses its identity by
combination with other similar lines formed from
the neighbouring defects, and becomes ineffective.
This leads to a viscoplastic behaviour. Following
those hypothesis, the number of defects n (t ) giving a
Smd at time t, obeys the following equation [11] :

Where n(t) = n(0) at t = 0 when the stress is

applied and n(~) is the equilibrium population of
activated defects corresponding to the stress u.

Hence, the first term of the right hand side gives the
nucleation rate of Smd and the second term corres-

ponds to the rate of annihilation of lines bordering
Smd until the defect, being again in its previous
state, is able to be activated once more thus forming
a new local shear.

After integration and introduction of the par-
ameters A y and va [11], the equation (2) gives the
compliance (non elastic component) :

with 1 /T = 1/ïi + 1/’r2 A = a Ay fv, VI No/kB T
(A y shear strain in a Smd ; f Schmid factor ;
va and v, respectively activation volume and volume
of matter concerned by the Smd ; No : number of
defects per unit volume i.e. No vi = Cd ; a : constant
about 0.1 [11]).

2.3 DYNAMIC COMPLIANCE. - In reference [5], a
possible distribution of parameters Tl and T2 was
taken into account resulting in an expression for
J(t ) so complicated that its Fourier transform was
approximated with the empirical equation :

with GI : unrelaxed modulus ;

the parameters h and k (between 0 and 1) were
considered to characterize the distribution width of

’T M (i.e. mainly T2) and (i.e. mainly Ti) respectively.
The relation (4) was used to compare experimental

data and calculated curves G’ (w ) and G"(03C9) (stor-
age and loss modulus respectively) in the case of
polystyrene, selenium and polybutadiene. In order
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to obtain a good agreement between both, it was

necessary to take T2 not too different of 1 although
the latter is more widely distributed than the former.
Furthermore, the temperature dependence of both
times had to be similar. Such features are not

implied in the physical hypothesis mentioned be-
fore ; so, a new pattern must be involved to complete
the preceding description and to obtain a new

expression for describing the dynamic behaviour of
amorphous polymers ; in the following, such an

expression, although similar to equation (4), will be
deduced from the physical bases included in this new
pattern.

3. Correlated molecular movement in condensed
matter (assumption 3).

In reference [11], equation (3) was used to « ex-
plain » experimental data by using a suitable choice
of the weight distribution of 1 and T2. However,
this approach is microscopically arbitrary and does
not explain the universality of Kohlrausch factor
exp [- (t/)b] with b : parameter between 0 and 1.
So, instead of the picture of parallel relaxation, in
which each degree of freedom i relaxes indepen-
dently with characteristic time i, Palmer et al. [12]
considered a series interpretation, involving a distri-
bution having a microscopic source in the corre-

lations between different degrees of freedom. In
other words, a hierarchy of degrees of freedom,
from fast to slow is involved : the fastest might
correspond to single-atom motion ; other atoms, or
groups of atoms, might only be able to move

appreciably when several of the fastest happen to be
placed in just the right way, leaving « free volume »
or weakening a bond.

Following Palmer et al. [12], let us consider a
discrete series of levels n = 1, 2,... with the degrees
of freedom in level n represented by Nn Ising spins.
Each spin in level n is only free to change its state if a
condition on some spins in level n - 1 is satisfied,
such as 03BCn-1 spins in level n - 1 attain a particular
state of their 2JLn -1 possible ones. The average
relaxation time n will be related by :

giving :

It was considered by Palmer et al. that 03BC~ de-

creases when the level of the system goes up and one
of the possibilities discussed by the authors was :

(the value of p being given further).

Altematively, we suggest a constant time to is

required for the system to go from the level f to the
level f + 1. Hence it takes a time te = fto for the
system to go from the level 0 to the level f, and f
may be replaced in equation (6a) by te/to :

In other words, introducing the duration of level
change makes the connection with the microstructure
of the material to appear, since changing the level of
the system implies time dependent atomic move-
ments.

Thus, by using equation (6b) instead of (6a),
equation (5) is transformed into :

Equation (7) is similar to equation (5) and postu-
late (c) of reference [12] : (t) (as n of Eq. (5)) is
the characteristic time corresponding to the exci-

tation of the system in such a way that in the nth first
level (n = t/to), changes i.e. atomic movements

occur ; this excitation is obtained after surmounting
sequentially a succession of free energy barriers

separating increasing energy levels.
By replacing the sum by an integral, equation (7)

can be transformed into :

0  IL 1 -- 1 may be regarded as a structural par-
ameter characterizing the correlation between the
different atomic movements in the glass which, as a
solid, is a strongly interacting system. For IL 1 = 0 the
matter surrounding the first moving atom is not
sensitive to such a movement and T (t ) reduces to
1. For 03BC1=1, the primary movement induces
numerous correlated atomic movements and T (t)
can reach the maximum value 7-.a.- We furthermore

expect such features to be relevant to glassy materials
when Tl  max  oo ; in reference [12], max was the
limit of n when n - oo with p = 1 + e ( E is positive
and much smaller than 1). In those conditions, the
present description may be compared to the work of
Ngai and White [13] who proposed an unified theory
of the low frequency dynamic response of condensed
matter : the relaxation of a primary species (side
group, chain segment and, more generally, a di-

pole... ) is followed by an interaction with correlated
states presenting low energy excitations. To under-
line this comparison, let us calculate r (t) from
equation (8) by developing it in series around
e = 0 ; at the first order (which corresponds to

p = 1), we have :
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which is equivalent to the result of Ngai and White
(Eq. (9) of Ref. [13]) :

with T = T 1 exp n y ; y = 0.577 (Euler constant) ;
n  1 ; tc = hIE, and E, is the upper « cutoff » of the
correlated state excitation.

By taking into account the condition (t) =
T max when t = ïmax? equation (9) leads to :

implying :

Thus, this result could correspond to figure la :
the preliminary atomic movement needs the time
T 1 but this movement results in a reorganisation of
the neighbouring matter corresponding to the whole
duration max.

Let us apply this assumption about correlated
movement to the picture recalled in part 2.2 ;
figure 1b then shows what could be the microstruc-
tural content of the correlated movement

hypothesis. The preliminary molecular movement
(duration Ti) induces hierarchically correlated mono-
mer movements resulting first in a local shear

(Smd) ; moreover, as long as stress is applied, the
loop expands around this Smd thanks to those
correlated movements and the duration of the whole

process is max. If the matter behaves as a simple
packing of nearly spherical units, T max would be

equal to T2 which is the time needed for the loop to
lose its identity (this is roughly the situation with
metallic and oxide glasses) ; but in the case of

polymers, the elemental units (monomers) form
chains which interact one each other (entanglements,
graft nodes, interfaces). The consequence is that

loop annihilation is followed by some local move-
ments near these obstacles, thus implying a second

Fig. 1. - Time scale for la) preliminary atomic move-
ments (T 1)’ 1 b) correlated atomic movements (application
of stress at t = 0).

type of correlation effect. Then, as shown in

figure 1b, correlation effects of type 1 and II may be
distinguished ; the former is concerned by the

topological necessity to rearrange nearly spherical
units (monomers) in order to obtain a propagation
of shear ; the latter corresponds to correlation
effects at longer distance implying a topological
constraint at the level of obstacles such as entangle-
ments, nodes or interfaces.

In these conditions, instead of using T 1 and

T 2 as introduced in part 2.2, one must take into
account equation (11) leading to :

with IL and 03BC2 : factors corresponding to correlation
effects of type 1 and II respectively. From both
preceding definitions and figure 1b, it appears that

IL &#x3E; 03BC2 ; moreover, 03BC2 = 0 would correspond to
2(t) = max i. e. the occurrence of only the corre-
lation effect of type I.

It is worthy to notice that, if experimental time
texp is shorter than Tmax, glassy systems clearly break
ergodicity so that equilibrium distribution in configu-
rationnal space are not usable. On the contrary, if

texp &#x3E; T max the system is ergodic, so that statistical
equilibrium laws become valid and relaxation

phenomena require pure exponential relations.
To sum up, several behaviours can be expected

(see Fig. 1b) :
i) texp &#x3E; T max : shear is irreversible (viscoplasticity)

and no memory of the deformation is left but the

rubbery effect.
ii) Tmax &#x3E; texp &#x3E; 2 : shear is irreversible but owing

to the necessary compatibility of deformation, some
internal stresses appear.

iii) ’r 2 &#x3E; texp &#x3E; 1 : shear is reversible : the shear
strain is recovered when the stress is suppressed
(anelasticity).

4. Non elastic déformation and dynamic modulus.

Due to correlation effects, T 1 and ’r2 in equation (2)
must be replaced by 1(t) and 2(t) given by
equations (12a) and (12b) respectively. Hence,
equation (2) is not any more easy to integrate. A
simplification can be made as T2(t) &#x3E; T1(t) so that
equation (2) is equivalent to a set of two independent
equations ; then, as developed in appendix, we
have :

i) The anelastic behaviour (nucleation and revers-
ible expansion of Smd)

which is obtained as a short time approximation.
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ii) The viscoplastic behaviour (loop annihilation)
described by :

corresponding to a long time approximation.
iii) The global compliance :

Such a relation is to be compared to equation (3)
despite the fact that coupling effects between anelas-
tic (short time t ~ max) and viscoplastic (long time
t  max behaviours have been neglected. In agree-
ment with this approximation, the anelastic term of
equation (14) can be developed in series. So, the
compliance J(t ) is a sum of terms with which it is

easy to calculate the Fourier transform leading to :

which can be written :

with: k=1-03BC1 ; h = 1 - 03BC2 ; 0393(k+1) ~ 1 and
0393(h + 1 ) ~ 1: gamma functions ; Tmr =

(AGI/k)-1/k max : mechanical relaxation time ;
H = kh/k h-1 (AGI)1-h/k.
Equation (15) is very similar to equation (4) but

there is only one characteristic time : the mechanical
relaxation time mr.

Furthermore, equation (15) is formally to be

compared with the rheological expression corre-

sponding to the modified limited biparabolic model
as discussed by Decroix [14] but in equation (15) all
the parameters have a physical meaning : Tmr is

proportional to the molecular mobility ; k and h
(0  k h  1) give the intensity of correlated effects
of type 1 and II respectively and H depends on h, k
and A which is proportional to the defect density.
To obtain a complete description of the dynamic

modulus, it is necessary to take into account, i) the
rubbery elasticity and, ii) the loss of entanglement
ar.d the reptation of chains. Figure 2 explains how to
introduce both phenomena : the rubbery modulus is
G, = pRT IMe, with p : specific mass ; Me : mean
value of the mass of the sub-chain between two

neighbouring entanglements ; R = NA kB. This
modulus corresponds to the spring CD so that

equation (15) can be transformed into (GI of

Eq. (15) becoming now GI - Gc):

Fig. 2. - Rheological diagram describing the dynamic
response and correspondance with physical parameters :
e G, : modulus at infinite frequency (GI &#x3E; Ge) (unrelaxed)
e T 1 : characteristic time for Smd nucleation
0 T2 : characteristic time for annihilation of lines border-

ing Smd
e Gc : rubbery modulus
e e : characteristic time for the loss of entanglement of
chains.

Furthermore, the modulus Gc can be relaxed

through the unentanglement of chains. As shown by
Doi and Edwards [15], the rubbery modulus is then
given by :

Te is the tube disengagement time given by :

L length of the tube along which each chain rep-
tates ; 03BEm molecular friction coefficient ; q : odd
number. Thus, in the case of a dynamic experiment,
equation (16) can be written, with GI &#x3E; Gc

The sum E results from the different values of q ;
i

moreover, one may think on the one hand that L has
not a single value and, on the other hand, the
characteristics of strands are also distributed [1]. In
such conditions, one can only choose an arbitrary
sum 1 (square, or triangular or Gaussian) with

i

E 9j = 1 (gai : statistic weight of each process T ej)’
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Finally equation (18) gives G’, G" and tan ~ =
G"/G’ but actually, in the following, equation (16)
may be used as far as measurements are done near
the glass transition temperature for which r,,,,
Te-

5. Application of the model ; discussion.

In this part, the model presented here above will be
applied to describe experimental data obtained
either in isothermal condition (frequency scanning)
or as a function of temperature (temperature scan-
ning) then a discussion will be developed in order to
underline all the possibilities included in the model.

5.1 ISOTHERMAL EXPERIMENTS. - The variation of

G’, G" and tan cp as a function of w can be calculated
from equation (16) and compared to experimental
master curves. At a first sight, the number of

parameters is important ; actually, each of them can
be obtained independently of each others :
- firstly, experimental master curves as usually

drawn [lc] give directly GI (limit value of G’ for
03C9 ~ oo), Gc (inflection point of the curve G’ (w ),
corresponding to the rubbery state), Te (end of the
rubbery plateau).
- Then, the COLE-COLE diagram G" -

f(G’), gives h, k and A ; this is shown schematically
in figure 3.
- Lastly, mr is chosen to have a good coinci-

dence between calculated and experimental peaks of
tan cp = f(03C9).

Fig. 3. - Schematic Cole-Cole diagram. The slopes of
tangents at 03C9 ~ oo and w - 0 give k and h respectively ;
the height of Cole-Cole curve leads to A (Eq. (15)-(18)).

This comparison is made with master curves given
in reference [16] for a polybutadiene (Fig. 4) and in
reference [17] for a polyvinylacetate (Fig. 5) and for
a polybutylacrylate (Fig. 6).
Such an agreement between theory and exper-

imental data was mentionned before [5] but only one

Fig. 4. - Solid lines : experimental master curves ob-

tained with a polybutadiene (Tg =153 K) [16]. Dotted
lines : curves calculated using equations (16), (18) with
G1 =109 Pa, G, = 8.2 x 105 Pa, H = 4.8, h = 0.54,
k = 0.24. (Measurements have been done between 153
and 203 K in the frequency range 10- 2-250 Hz; the

maximum scattering in Log (G/Pa) is ± 0.1.)

Fig. 5. - Solid lines : experimental master curves ob-

tained with a polyvinylacetate (Tg = 301 K) [17]. Dotted
lines : curves calculated using équations (16), (18) with
GI = 2  109 Pa, Gc = 3.3  105 Pa, H = 0.25, h = 0.91,
k = 0.27. (Measurements have been done between 305
and 322 K in the frequency range 5 x 10-5-5 Hz ; the
maximum scattering in Log (G/Pa) is ± 0.05.)

characteristic time is needed in the present work ;
furthermore, the problem of distribution is solved
without further hypothesis ; thus, i) k governs
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Fig. 6. - Solid imes : experimental master curves ob-

tained with polybutylacrylate ( Tg ~ 250 K) [17]. Dotted
lines : curves calculated using equations (16), (18) with
Gj = 2 x 109Pa, Gc = 8  105Pa, H = 0.4, h = 0.70,
k = 0.27. (Measurements have been done between 217
and 245 K in the frequency range 5 x 10-5-5 Hz ; the

maximum scattering in Log (G/Pa) is ± 0.05.)

mainly the high frequency part of the master curves
and, ii) h governs the height and the width of the
peak tan cp = f(03C9) [18] : (tan ~)max is higher when
h approaches unity (e.g. for polystyrene, h = 0.95
and (tan CPmax is about 6) and decreases with h (e. g.
for, epoxy resin or semi-crystalline polypropylene, h
is lower than 0.7 leading to (tan cp)max lower than 1).
This is in agreement with the assumed physical
origin of h : in the former case (polystyrene),
correlation effects of type II (see part 3) are limited
to entanglements ; in the latter case these correlation
effects imply either graft nodes (epoxy resin) or
interfaces (semi-crystalline polypropylene).

5.2 VARIATION OF DYNAMIC MODULUS WITH TEM-
PERATURE. - In order to interpret spectra obtained
through temperature scanning with equations (16)-
(18), the temperature variation of Tmr must be

precised. In this purpose, two cases can be dis-

tinguished :

i) At T  Tg, the polymer can be considered as a
solid and, in the case of experiments made in

isoconfigurational conditions, the approach based
on correlation effect leads to equations (10) and
(12a) with IL 1 being constant.

In equation (10), comparable to that proposed by
Ngai and White [13] and referred to second univer-
sality, T 1 is a characteristic time of the preliminary
molecular movement leading to the formation of the
Smd ; let us consider that this molecular process is
connected to the intramolecular rotational freedom

degree of the smallest sub-chain atoms further along
the chain. Such a possibility, well known as

« crankshaft » process [19], might be responsible for
the 03B2 relaxation. Hence, in equation (10), Tl might
be similar to the j8 relaxation time with :

It is worthy to notice that T 1 is probably distributed
due to the disordered state of the matter ; never-
theless such a distribution is not so wide than that
induced by correlated effects as schematically shown
in figure 1b. In other words, the relaxation time
spectrum could be formed of two regions (Fig. 1b) :
one slightly distributed around 1, mean value

corresponding to (3 relaxation, and the other,
stretched between T 1 and l’ max’

ii) At T &#x3E; Tg, the matter is in a metastable

equilibrium (supercooled liquid) : the structure (i.e.
the coefficient of correlation) is temperature depen-
dent but it is not so obvious to have a relation
between li (or 03BC2) and T. Then the best way to
describe temperature dependence of rheological
properties of polymeric glasses might be to relate the
characteristic time Tmr to the life time for the

movement r,,,, as the temperature dependence of
the latter can be known via the temperature depen-
dence of the defect density (Eq. (la) and (1b)).
On the other hand, ’Tmax can be identified to the

diffusion time of the species moving in order to relax
internal stress fields due to the evolution of Smd. In
a similar way that in reference [11], a good approxi-
mation can be given by :

with le: mean diffusion length ; v is the mean

velocity of diffusing species and can be found from
Einstein relation :

F is the force acting on the moving species :

with Eel : elastic energy of stress field line singularity
per molecular length.
From equations (1b, c) and (20a, b, c), one

obtains :

which means that Tmax is of the order of magnitude of
mol.
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To sum up, i) recalling that the characteristic time
accessible to experiments is :

and, ii) taking into account equations (10) and (19),
we have :

with

There is only one adjustable parameter which is
039403BC * (T &#x3E; Tg) or t0(T  Tg).

Let us apply those equations to experimental
results obtained with a polybutadiene : in the refer-
ence [16] the dynamic modulus was obtained at

frequencies between 10- 3 and 103 Hz in a tempera-
ture range higher than Tg so that we need in this case
only equation (22a) ; by taking i1JL * = 0.06 eV and
Cd calculated as indicated in part 2.1, the variation
of T mr with temperature is shown in the upper part of
figure 7. The variation of G’ and tan ~ with tempera-
ture, calculated with equation (16) with the corre-
sponding value of Tmr, is reported in the lower part
of the same figure. Those curves are compared to
experimental results of Salvia obtained at different
temperatures in isothermal conditions [16] :
- (Tan ~)max =1.1 (experimental value : be-

tween 1.15 and 1.20).
- The non symetric form of the calculated

tan ~ peak is the same as that of the experimental
curve.

- G’ decreases of 3 orders of magnitude when
the temperature is increased of 46 K (experimen-
tally, the same G’ decrease need 50 K).
- The apparent activation energy defined by

is found to vary between 1 and 2.5 eV in agreement
with experimental values as shown in figure 7 (dia-
gram inserted in the upper part).

It is worthy to notice that equation (22a) explains
the temperature dependence of Ea which appears to
be the consequence of the temperature dependence
of Cd : thus a possible molecular origin of Fulcher-
Tamman-Vogel’s equation (and WLF law) could be
naturally established instead of introducing arbi-

trarily such an equation as in reference [12].
At temperatures lower than Tg, although Cd is

constant (isoconfigurational conditions), high values
of Ea are generally mentionned : for instance, in the
case of polystyrene, Ea was experimentally found
about 3 eV [20] ; equations (19) and (22b) lead to

Fig. 7. - Curves G’ and tan cp = G "/G’ versus tempera-
ture calculated using i) equation (16) and ii) the variation
of T mr with temperature shown in the upper part (see text
for parameters). Experimental points correspond to

polybutadiene [16]. Solid lines : calculated.

Ea = Ullk i.e. 3.2 eV. Similarly, the values of pre-
exponential factor lower than 10- 30 s (given even in
isoconfigurational conditions) are explained by
equation (22b).
To conclude this point, let us remark that high

values of apparent activation energy was previously
interpreted in terms of a model of cooperative site
changes [22] ; but, beyond the fact that equations of
this model are neither very convenient nor nredic-
tive, the stretched exponential decay and Fulcher’s
equation are not discussed.

5.3 CREEP AND STRESS RELAXATION TESTS. - The

detailed calculation of creep and stress relaxation
curves is beyond the scope of this paper. Never-
theless it is worthy to notice the following points :

i) Equation (14) shows that the short time non
elastic compliance varies as (t/max)1-03BC1. Consider-
ing that 1 - g 1 is not too different from 0.3 in the
case of polystyrene [20], it appears that the form of
the creep in this region is Andrade creep, in
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agreement with results of Plazek [21]. For longer
time, the rubbery effect must be taken into account
but the experimental slope d log J(t)/d Log t is
about 0.9, which can be compared to the value of h
[18, 20].

ii) By inverse Fourier transformation of

equation (16), the stress relaxation function may be
obtained as :

This equation has nearly the same form as empiri-
cal formulations as mentionned in reference [1(b)].

6. Conclusion.

The theory presented here is mainly based on the
hypothesis of thermomechanical nucleation of Smd
from among defects. Thus the low temperature (high
frequency) side of the a relaxation peak could
correspond to localized molecular movements

(anelastic behaviour and structural parameters k, A,
GI and T (t)) ; on the other hand, the high tempera-
ture (low frequency) side of this peak could corre-
spond to longer distance movements (viscoplastic
behaviour and parameters h, A, G,).
Both characteristic times (t) and Trm have been

related to the time life Tmol of a monomer movement
thanks to the hierarchic correlation assumption
which, moreover, leads to the Kolhrausch factor :
from this point of view, the present work is linked to
papers recently published [23, 24] in order to give a
physical bases to stretched exponentials generally
invoked in fitting experimental relaxation curves
obtained with glassy solids. The ideas proposed here
may be viewed as an improvement of concepts
presented in Palmer’s paper, i) using assumptions
clearly formulated in terms of microstructure and,
ii) leading to equations easily usable to be compared
with experimental data.
To conclude, in such a picture the so-called « glass

transition » is conditionned (through T mr) by both
intramolecular (through /1JL) and intermolecular

(through Cd) forces. In this way, the model here
proposed differs noticeably from other models in the
same field, which are generally phenomenological in
their nature.
The consequences of such an analysis about the

nature of glass transition, the structural relaxation in
glasses, the connection between j3 and a rela-
xations... might be important. This will be developed
elsewhere.

Appendix.

Let us consider No defects per unit volume, statisti-
cally distributed between 2 populations : i) n(t)

being non-activated and ii) [N0 - n(t)] activated

(by activated, we mean they present a configuration
with a local shear component i.e. they form a Smd).
Using Boltzmann statistics, it can be calculated [2b]
that the application of a stress a leads to a new
equilibrium corresponding to further activation of
AN defects with :

and

Au is the energy level difference between both non-
activated and activated states.
The general equation describing the rate of acti-

vation (or rate of formation of Smd) is equation (2)
i.e. : .

where n (t ) = n(0) at t = 0 when the stress a is

applied and n(~) is the equilibrium population of
activated state corresponding to this stress (notice
that n(0) = No/2 if Au = 0). rl and ’r2 being
replaced by 1(t) and 2(t) respectively,
equation (A.2) is not easy to integrate. As 2(t) is
much higher than 1(t), we propose to consider two
limit cases :

i) For shorter time (2(t) ~ t &#x3E; 1(t)), the last
term of equation (A.2) can be neglected so that this
equation becomes :

Equation (A.3) which describes the anelastic

behaviour, can be integrated giving :

The formation of a Smd and its subsequent
expansion induce a local shear 039403B3 conceming a
volume of matter v, ; this results in a macroscopic
strain which is, in a macroscopic volume of matter
Vo, equal to y 1 = 039403B3* v1/V0.

It is worthy to note that vi is at least equal to the
volume of the defect where the Smd is nucleated but

may be larger when the Smd is expanded. By taking
into account the rate of nucleation of Smd in the
volume Vo, we obtain the strain rate :

giving with equation (A.4) :
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Finally, integrating equation (A.5) and using
equation (A.1) give the anelastic compliance :

with

ii) For longer time (1(t)  t  2(t)), n(t) is
about n(~) and the first term of the right hand side
of equation (A.2) can be neglected so that we have
an equation describing the viscoplastic behaviour :

For each Smd in the volume Vo having expanded
until annihilation of the line en, we have a macro-
scopic strain 03B32 = Ab&#x3E;/V0 (A is the mean area
swept by the loop C n when it has covered the mean
distance 1 c and (b) is the mean value of the shear

vector).
Here again, by taking into account the rate of

annihilation of lines bordering Smd in the volume
Vo, we obtain the strain rate :

which gives, with equation (A.7) :

Let us remark that Ay v1 is lower than, but not too
different from A (b) so that we shall admit both

quantities are similar. Thus, the viscoplastic com-
pliance can be written :

A complete expression for the total compliance is
given by summing equations (A.6) and (A.8) which
means that the error resulting from their application
in the whole time scale, is neglected as some

compensation occurs between the error in

equation (A.6) (the compliance is underestimated
when 0  t ~ T max) and that in equation (A.8) (the
compliance is overestimated when 0  t  7-.aux).

Finally, introducing the elastic compliance, we
have :
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