
HAL Id: jpa-00245512
https://hal.science/jpa-00245512

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evolution of CAD tools towards third generation custom
VLSI design

H. de Man

To cite this version:
H. de Man. Evolution of CAD tools towards third generation custom VLSI design. Revue de Physique
Appliquée, 1987, 22 (1), pp.31-45. �10.1051/rphysap:0198700220103100�. �jpa-00245512�

https://hal.science/jpa-00245512
https://hal.archives-ouvertes.fr

31

Evolution of CAD tools towards third generation custom VLSI design

H. De Man

IMEC, Kapeldreef 75, 3030 Leuven, Belgium

(Reçu le 28 juin 1985, accepté le 9 juin 1986)

Résumé. 2014 On discute ici les tendances dans la CAD des circuits aux applications spécifiques (ASIC). La rareté des
concepteurs chevronnés ainsi que d’autres contraintes conduisent à une stratégie de conception qui tend à séparer la
conception « système » de la conception « silicium ». Les concepteurs de systèmes utiliseront systèmes du type
« intelligence artificielle » qui travaillent à partir d’un langage spécifique. Les architectures seront basécs sur des
modules réutilisables et paramétrables. Un programme symbolique et interprétatif doit supporter la génération du
« layout » ainsi que le test et la simulation temporelle. Les stations de travail seront du type microprocesseur qui
allient les styles de programmation du type symbolique et déclaratif. La formation des ingénieurs devra alors se faire
dans le sens d’enseigner les langages destinés à produire les circuits électroniques.
Abstract. 2014 In this paper trends in CAD for application specific IC’s (ASIC) are discussed. Shortage of skilled silicon
designers, too long time to market and too low level of design as in standard cells and gate arrays, lead to a design
strategy whereby system design is strictly separated from silicon design. (Meet-in-the-middle design). System
designers will use interactive, knowledge based synthesis tools adressing a number of well defined target architectures
to be generated from a formal specification language. Architectures are defined as a connection of a well defined set
of reusable and parameterizable modules which are predesigned by silicon specialists. This is no longer done on a
CALMA type environment but on an interpretative symbolic programming environment. This environment supports
automatic parameterization and generation of layout, timing and testing views as well as automatic adaptability to
new technology rules. Verification will be shifting away from costly simulation to knowledge based verification, based
on a formal definition of design styles and automatic theorem proving. This will require multiprocessor workstations
unifying high speed graphics and imperative, declarative and symbolic programming styles. A major problem with
this methodology will be the (re)education of design engineers in order to design hardware the « soft» way.

Revue Phys. Appl. 22 (1987) 31-45 JANVIER 1987, 1

Classification

Physics Abstracts
85.40

Introduction.

Custom designed IC’s or application specific IC’s

(ASIC’s) will cover half of the IC designs by 1990 and
40 % will be designed by the end users. In this paper we
will derive the characteristics of quick turnaround

design from todays gate-array and standard cell designs.
It is shown that the key to success is an intelligent
separation between system and silicon design at the
level of parameterizable MSI and LSI functions. This is
called the meet-in the middle design strategy and leads
to the concept of silicon compilation.
Today true silicon compilers, including synthesis and

test techniques, are only in a research phase. Silicon
module design is supported already by so-called module
generators. Module generators are software environ-
ments and will be only successful if silicon designers get
used to the fact that silicon design becomes increasingly
a matter of programming of design knowledge. System
designers on the other hand will be confronted with

REVUE DE PHYSIQUE APPLIQUÉE.-T. 22, N. 1, JANVIER 1987

formal specification languages as well as the use of
interactive graphics for floorplanning.

Finally, verification tools such as simulation at all
levels are no longer realistiç nor reliable in a VLSI
environment.
New techniques based on rule based expert systems

will evolve gradually towards proof of correctness
systems. Re-use of scarce design expertise, especially at
the sub-micron silicon level, must be cought in expert
systems to be usable by less experienced designers and
it is therefore expected that, when prices of AI
workstations drop to an acceptable level in ca.

3...4 years, their use will proliferate very rapidly.
Their efficient use however will strongly depend on

urgently needed research to formalize design at aff
levels such that rule formulation can be done in an
efficient way. A large scale joint effort of computer
science and electrical engineering academia confronted
with industrial experience is of prime importance for
success. The role of universities in education and

3

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/rphysap:0198700220103100

http://www.edpsciences.org
http://dx.doi.org/10.1051/rphysap:0198700220103100

32

reeducation is of prime importance to succeed. Addi-
tional funding is required whereby perhaps also industry
should invest universities to get the people taylored in
their needs.
Whether all of this will also be of economic impact in

Europe depends on the broadness of scope of industrial
and financial institutions to invest in adventurous small

start-ups based on bright ideas of excellent research
teams. The time is ripe for it.

1. CAD tools for gate-arrays and standard ceU custom
IC’s.

In this paper we investigate the evolution of CAD tools
for custom design of so-called application specific IC’s
or ASIC’s.

Until today most ASIC’s are only substitutes for

control logic structures on PCB’s. Tools to design so-
called VLSI systems on a chip, exploiting massive
parallelism to obtain high data throughput are only just
now appearing. This evolution will be addressed.
A recent study points to a big market for such ASIC’s

but, unfortunately, 80 % of it requires production
volumes below 5 000 units and is to be used in systems
with less than 5 years lifecycle. Therefore it is mandat-
ory that ASIC’s are designable by the mass of tradition-
al system designers rather than the few silicon designers
available today.
The full custom design style with its very large design

spectrum from system to transistor level is clearly
unacceptable since it is error prone, requires too much
design time and can only be done by silicon engineers.
On the other hand, actual design of ASIC’s has gone
through two mature stages or generations : the gate
arrays and the standard cell design styles. We will first
learn from these and then try to generalise their good
qualities and try to solve some of their drawbacks to go
towards the so-called ASIC’s of third generation.
The principle of gate arrays and standard cells [1] is

.

well known. It is characterized by the fact that the
silicon part is either partly preprocessed (gate arrays)
or prestored in a software library (standard cells). The
designer specifies his (her) logic circuit as an intercon-
nection of standard TTL (CMOS) catalogue parts on an
hierarchical schematics editor using a graphics terminal
(Fig. 1). These are available to the system designer
from the many successful workstation vendors (Daisy,
Valid, Mentor, Silvar-Lisco, Venus...). These worksta-
tions (WS) have software which automatically expands
hierarchy and maps the expansion into a netlist of

primitive silicon cells which are thoroughly proven,
debugged and stored in the (often) closed database of
the CAD system. This database contains all consistent
« views » of these cells and is the link, at the gate level,
between the foundry (contracted by the workstation)
and the logic designer. As each cell has a Boolean
function view, a complete logic simulation model is

produced which, in todays system, can be of
10 000 gate complexity. Such simulations do take too

Fig. 1.

much computer time on 32 bit 1...5 MIPS workstations.
Therefore most workstations now contain so-called

logic simulation accelerators which are in fact mic-
rocoded processors executing the logic simulation

scheduling algorithms. These lead to simulation speeds
which are two to three orders of magnitude above
software implementations [2]. These simulators form a
valid alternative to traditional breadboarding techni-
ques.

Schematics editing, expansion, mapping and logic
simulation are now usually called CAE (Computer
Aided Enginnering) or front end CAD. Today, in most
cases, the involvement o f the logic designer stops here.
Netlists, more and more described in the EDIF stan-
dard (Electronic Design Exchange Format [3]), are

now transferred to the WS vendor (foundry) and from
there on the so-called physical design starts.

This is the automated placement and routing of cells
followed by interconnection parasitic extraction to

build a timing model for the circuit. In the past, timing
verification has been done using timing simulation [4].
It is however difficult to make sure that the timing test
pattern finds a valid worst case timing path. Therefore
this is more and more substituted by graph based
critical timing path analysis [5-7]. This insures correct-
ness and is much faster than simulation. It illustrates the
trend away from simulation towards expert analysis
systems (see paragraph 3.4).
When timing is approved, test patterns have to be

generated. Today, this is the weakest part of WS

systems. Usually exhaustive fault simulation is done to
verify fault coverage of the user defined functional test
patterns. This is a very costly operation for which
increased use is made of so-called hardware im-

33

plemented fault simulators. It is this authors opinion
that instead more clever self-test [9], scan-path [10] or
expert systems to support testability [11] should be used
to alleviate this problem. Finally a test-tape as well as a
pattern generation tape are generated for the silicon
foundry.
The important things to take over from these systems

for use in the third generation ASIC’s are :

P1: A complete split between silicon and logic design ;
P2 : A re-use of proven silicon (just as a software re-

use of proven procedures) ;
P3 : Accessible by the mass of 250 000 system designers

as opposed to the 2 500 silicon specialists [8].
The latter market, only tapped for 2 % by the WS

vendors today, is the key to their success [8].
However, although todays standard cell and gate

array systems have reached the 10 000 gate level (espe-
cially in Japan), there remain serious deficiencies which
can to be summarized as follows :

Cl : Silicon density is too low. Experiments [12] indi-
cate differences of a factor 2...3 with respect to
manual design mainly because of lack of the

exploitation of array structure in logic such as
data-paths, ROM, RAM, systolic arrays, etc...

[13].
C2 : The gate level is a too low design level. The WS

systems support automated layout and re-

usable cell design but they neglect the time

consuming synthesis of a system in terms of logic
gates [14].

’

C3 : The investment in a cell library is large and binds
to a particular technology (foundry). Often when
the design is completed the next generation of
technology arrives. There is a need to obtain
automated adaptation of cell libraries to other

design rules.
C4 : A lot of effort is put into digital design systems but

there is a niche in the market of analog design
which is barely addressed yet.

2. Evolution towards true silicon compilation.

Fortunately, there is a lot of effort lately to extend the
above methods towards « third generation ASIC’s »
and to solve the above problems. Third generation
ASIC’s are characterized by a design methodology
which this author characterizes as : Meet-in the middle

design strategy. This concept is illustrated in figure 2.
Instead of designing at the gate level, the system
designer decomposes his (her) system specification into
so-called Functional Building Blocks (FBB) which are
MSI, LSI modules such as data-paths, counters, regis-
ters, PLA, RAM, ROM and even, recently, complete
microcontroller cores such as in the PLEX [15] system.
The layout outline of these modules as well as their
terminal position is then used for silicon assembly much
in the way a PCB is designed.

Fig. 2.

The problem is now mainly at the silicon side since
FBB’s are of much greater variability than logic gates.
Therefore the re-usable FBB’s must be adaptable to the
system requirements so they have to be generated by
softwaré procedures rather than be fixed geometries
such as standard cells. These are called parameterizable
modules or paracells [16]. This leads to the remarkable
fact that silicon design becomes increasingly intermixed
with programming which causes a reeducation problem
for traditional silicon designers (see Sect. 3).
When the flexible structured module generation is

combined with automated synthesis techniques to de-
compose a formal system description into an intercon-
nection of FBB’s and these FBB’s are automatically
placed and routed for a requested performance we can
talk about silicon compilation. Indeed, only in this
context we have a true analogy with software compilation
of a high level language into machine code in computer-
science.

Figure 3 shows the three essential parts of what this
author would categorize as a true silicon compiler.
The line in the middle is the meet-in the middle line.

Fig. 3. - Silicon compiler parts.

34

2.1 THE SYNTHESIS PART OR COMPILER. - The

system designer ideally uses a synthesis program
which is the true compilation part as well as a

floorplanner tool to assemble the layout from a call,
below the middle, to the re-usable module generator
procedures designed by the silicon designers. We
now discuss this in more detail.
The system designer ideally enters his (her) design

at the behavioural level by describing it into a system
specification language.
Most of these languages are in full development.
They are mostly PASCAL, ADA or LISP like

languages completed with timing expressions and
ways to express parallelism.

Recently, there is a trend to opt for applicative or
functional languages, such as the SILAGE [18]
language. These languages are non-procedural i.e.

they express a set of simultaneous single assignment
equations and can be compilated easily into data-
flow graphs and Petri-nets [19]. These compilers can
be given hints by means of pragmas (such as in

ADA) in order to hint a particular target architecture
to the compiler (e.g. parallel- or single processor,
bit-parallel, bit-serial,...). Many approaches are

presently used in a research phase to build these
silicon compilers. These can roughly be divided into
algorithmic and knowledge based techniques [20, 21]
with a mixture of the two probably being the correct
approach.

Notice that, ideally spoken, if the rest of the
silicon compilation is correct by construction, simula-
tion is only necessary at the behavioural level to
verify correctness. This simulation is much more
effective than at the gate level and allows for an
embedding of the chip design in a multichip system
description.
For the time being this high level synthesis is only

in a research phase and we will come back to it in
section 4. It is certainly the area where we will see
impressive breakthroughs in the next few years.
Today the system designer usually is doing only a

manual (error prone) synthesis, possibly using func-
tional and register transfer simulation to insure

functional correctness. The synthesis is done in
terms of the flexible modules to be described next.

2.2 THE MODULE GENERATOR PROCEDURES. -
Re-usable flexible modules are provided as software
procedures by the silicon compiler vendor for a
given foundry technology. Based on the module
specifications by actual parameter assignment from
the system designer, the module generator produces
four representations of the requested module in-
stance :

1. A bounding box with terminal position intervals
for floorplanning.

2. A detailed layout for mask pattern generation.

3. A timing model computed for the instance and
parameterized for fan-out and wiring load.

4. A functional model for logic simulation (if no
synthesis has been used).
The timing model allows for a detailed timing

analysis after the floorplanning phase. This leads poten-
tially to floorplan modification, buffer adaptation or, in
the worst case, a change in the architectural description.
Examples of module generation will be given in

section 3.

2.3 THE FLOORPLANNING TOOL. - Floorplanning
consists of the following steps :

1. Placement of the modules on the chip, subject to a
compromise between wire length and area

minimization.
-

2. Routing of power/ground, clock, signal and bus
connections between modules (exploiting abutment
and gliding terminal positions in flexible modules).

3. Extraction of routing and fan-out loading and
predicting timing problems.

It should be noted that automation of the above is
much more difficult than standard cell/gate array place-
ment and routing for the following reasons :

- placement of arbitrary shaped blocks, rather than
fixed height cells,
- irregular wiring channels and power-ground dis-

tribution,
- need for many types of routing : global, channel,

switchbox, river, bus... routing.
For a good overview of these problems, see [22].
Although in principle good algorithms exist for pure

placement such as slicing [23] and, recently, simulated
annealing [24], it is felt by many designers, that none of
these techniques has enough intelligence to compete
with human ingenuity to obtain the best routing pattern.
Therefore almost all actually existing floorplanners [25-
27] allow, besides automated placement, for user

interactive placement of modules. Much more essential
is fully automated routing since this is a very error-

prone and time consuming activity. Here also a prefer-
ence goes to interactive use of a toolbox of routing
strategies [22] rather than a fully automated solution.
As this layoùt technique differs in many respects

from PCB layout, one has to face the acceptability
problem of this technique by actual system designers.

In view of the highly heuristic approach of human
ingenuity to placement and routing, it is to be expected
that floorplanning is an excellent candidate for the
future application of expert system programming techni-
ques [28]. In this way the expertise of scarce layout
specialists can be used to guite the non expert system
designer through the composition of a high performance
chip based on a silicium compiler output file.
As shown in figure 3, in the actual state of the art,

there are no true silicon compilers available. What is

35

commercially available is a structural specification lan-
guage, a selected set of module generators for a given
foundry (true technology independence is still in a
research phase in spite of glossy brochure statements)
and interactive floorplanners with automated routing
tools. They are available from new companies such as
e.g. Silicon Compilers Inc., VLSI technology Inc.
Seattle Silicon Techniques, Silicon Design Labs. etc. A
good overview of their status can be found in [29].

Figure 3 also shows that :

1. Actual research should concentrate on the synth-
esis and testability aspects of silicon compilers of which
they are the essential component and the key towards a
fast design methodology. This will be discussed in
section 4.

2. The fact that module generators are software

programs will have a serious impact on the design style
of actual silicon circuit- and layout designers. This

aspect will be covered in the next section.

3. Module generators and their impact on silicon design.

3.1 ANATOMY OF A MODULE GENERATOR. - Mod-
ule generators can be defined as computer programs
created by a team of silicon circuit and layout
designers and software engineers. The computer
programs generate functional and timing instances of
the module upon request of the system designer or
silicon compiler layout. These instances satisfy given
specifications based on the input of actual structural,
geometrical and electrical parameters. Ideally a

module should also be adaptable to new technology
rules.

Therefore, module generators require a program-
ming environment which allows for easy creation,
generation and adaptation of modules (Fig. 4). Basi-
cally actual module generators generate three types

Fig. 4.

of module structures illustrated in figure 5. They
are :

- parameterized structured logic ;
- matrix programmed random logic ;
- standard cell random logic (discussed before).
In structured logic (Fig. 5a) a module is composed by

a mathematically definable geometrical composition of
primitive cells at transistor level. These cells fit mainly
by abutment and stretching and sometimes by a limited
set of personalization routing over cells.
The latter requires at least double metal CMOS

technology.
’

Fig.5a.

Fig. 5b.

Obviously structure logic is to be used for digital
word processing : counters, registers, ALU, memory,
multipliers, systolic arrays etc... It provides much
better integration density than standard cells [13].
Matrix programmed logic (Fig. 5b) makes use of two-
dimensional orthogonal wiring pattern in which ran-
domness is programmed by transistor positions at

crosspoints. Such structures can be optimally generated
by computer programs starting from Boolean equations
or Finite State Machine (FSM) descriptions.
Examples of these are PLA [30, 36], SLA [31],

Weinberger-arrays [32, 33] and gate matrices [34, 35].
Figure 4 shows the anatomy of a module generation

programming environment to the system designer (or
silicon compiler). It behaves as a black box to which the
input is a call for instantiation of a parameterized
(m, n) module or a set of Boolean equation or FSM
description. The output (which should be available in
seconds !) is layout, functional and timing information
for floorplanning and high level verification.
The role for the silicon designer (create action) is

more complicated. The new aspect here is introduced
by parameterization and technology independence. As
an example, there is indeed a significant difference in
the description of an n by m bit - as opposed to an
8 x 4 bit multiplier. The latter can be done only once
on a traditional graphics editor, the former requires a

36

mathematical description in function of n and m but can
be re-used for all m and n belonging to the validity
range of the parameters.

Therefore, contrary to actual practice, the netlist of a
given module in terms of cell primitives as well as the
description of the relative positioning of the module
structure needs to be expressed by a language rather
than a schematics or graphical entry.

Figure 6 shows a very simple example of such a
procedural description for a repetitive interconnection
using, the HILARICS language [37] developed at

IMEC under the EEC microelectronics regulation.

Fig. 6. - Example of a procedural netlist description using
HILARICS.

Netlist and relative positioning procedures are neces-
sary to drive and verify abutment, routing, stretching
and compaction during cell building and cell composi-
tion procedures necessary to produce the layout outline,
terminal coordinate intervals and pattern generator
input. Last but not least a module generator requires a
verification system which must function also for

creation, generation and adaptation phase.
It is clear that during the creation phase, in analogy

to the debugging facilities offered to a software prog-
rammer, a continuous interactive verification of correct-
ness is necessary at interconnection, functional and
electrical level and this for the intended validity range
of the module parameter set.

This role is rather traditional but the generation and
adaptation phase require intelligent approaches to

verification as the silicon compiler, system designer and
floorplanner also ask for a very fast generation of
instanciated functional and timing models. It is this
authors opinion that this again is an excellent application
area for expert system techniques whereby the model
building is done based on an intelligent registration by
the system o f the building sequence o f a module. The use
of object oriented programming techniques using
frames and demons based on LISP or SMALLTALK
AI languages seems appropriate [38-40].

Finally, it should be noticed that adaptation to

technology is only possible if some form of parameteri-
zation of cell layout parameters is available which calls
also for a design procedural approach to transistor levei
design (see Sect. 3.2).

In the sequel we will discuss some trends in cell

building procedures (Sect. 3.2), cell composition pro-
cedures (Sect. 3.3) and expert verification systems
(Sect. 3.4).

3.2 CELL BUILDING PROCEDURES. - In view of the
above mentioned need for defining a cell as a

flexible interconnection of transistors subject to

abutment and stretching constraints, we can not
describe cells as fixed coordinate geometries
(Fig. 7a) except for very small cells (e.g. memory
cells).
An obvious way to obtain flexibility is to described

polygons as functions of symbols (Fig. 7b) which in
turn are functions of layout rules and cell constraints.

Fig. 7. - Cell building styles.

This is called procedural layout. Recently quite a
lot of effort has been spent in such techniques.
Many of these systems are based on a kind of

PASCAL [30, 42] or C language [41, 27].
A disadvantage of this technique is that it requires

a new language definition (never complete !) and in
order to be efficient in use, it needs to have an

interpretative character during creation and a com-
piled character during generation.
A better technique is to make use of e.g. LISP

[38], potentially with an object oriented superstruc-
ture [39], which can be used with all its available

power to provide both interpretative and compiled
facilities. Examples of this are DPL [43], ICPL [44]
and Cameleon [45] under development at IMEC
under the Esprit 97 contract.

It is interesting to note that at Hewlett Packard
[46] ICPL is used by silicon designers after 4 weeks
of LISP training... an example that, given a company
policy of continued education, designers are suscept-
able to these new design methods. It is this authors

opinion that the difficulty of the introduction of new
techniques in Europe is often more an idea of

managers than that of the peoples acceptance of it,
provided time is made available as an investment in
the future.

Procedural layout also has the advantage that,
besides geometrical procedures, one can write an
electrical procedure as well, based on the layout
rules and electrical parameters of the technology
used.

37

In this way, based on the interconnection pro-
cedure, immediately an electrical network can be
created such that costly extraction CPU time is
avoided. Even intelligent reduction techniques in
RC networks can be programmed into the generated
network such that the number of nodes in the circuit
is drastically reduced for timing simulation.
An example can be found in [30].
However, procedural layout at transistors level

has a serious drawback : it is very hard to formulate
all mathematical restrictions on more than 10

geometrical items in a cell while still guaranteeing
correctness under the required range of layout and
cell parameters.

Therefore the technique is only applicable to very
regular structures such as present in the matrix

programmed random logic structures mentioned in
section 3.1.
A possible solution to this problem has been

presented by Kraak et al. [47] at ESSCIRC ’85,
whereby the parameterization equations are gener-
ated from an existing Manhattan type layout. By
assigning new layout rules, transistor dimensions or
terminal constraints, a new cell can be generated.
This can be an important technique to support future
procedural layout systems.

Cell flexibility can also be obtained by using
symbolic layout techniques (Fig. 7c). Hereby layout
is described by a loose relative placement of layout
symbols for devices and interconnection layers. This
is done on a symbolic editor. A spacing program
then generates a true layout, satisfying layout rules
(defined in a technology file), wiring (terminal
positions) and positional constraints. Hierarchical

systems also support abutment procedures at the
next level of the hierarchy.
Graph bàsed [48, 45, 49] as well as virtual - grid

based [50, 52] spacing have been reported. Their
relative merits are discussed in [53]. Symbolic layout
(restricted to Manhattan layout) has the obvious
advantage of being flexible both for adaptation and
composition. It is correct by construction and easily
usable for electrical model generation since the
electrical role of each symbol is predefined.
A disadvantage of the system is that often compac-

tion algorithms are experienced as too difficult to
control by the designer and layouts are not as dense
as hand = or procedural layout usually provide.
A compromise, whereby the Symbolic layout is

procedurally generated (easy to do) followed by
compaction to provide flexibility is an interesting
technique for matrix programmed logic structures
[54].

Last but not least, for single cells, one cran also use
a symbol based true layout whereby correctness at
design time is checked by incremental design rule
checking (DRC) and incremented changes are taken
care of by plowing, move and compaction techniques

such as in the MAGIC [55] and MOVE [56] systems. In
a good module generator all these techniques should be
made available in a user friendly toolbox programming
environment.

Very small or very high performance cells can be
done using the MAGIC-MOVE approach, more com-
plex cells using automated abutment using symbolic
layout or the Magic approach followed by the para-
meterization approach of [47].
Procedural or procedural-symbolic techniques are

most appropriate for small cells of matrix program-
med logic. As a typical example of a fully procedural
module generator, figure 8 shows some aspects of
the FSM and Boolean equation silicon compiler
PLASCO [30] developed at IMEC. Figure 8a shows
that it is a silicon compiler since it contains logic
synthesis tools (optimal state assignment SOAP)
based on [57] and product term and literal minimization
(PRESTOL II [60] based on a heuristically best combi-
nation of ESPRESSO II [58] and PRESTO [59] techni-
ques). The logic structure produced is a set of PLA
matrices with a high degree of adaptability to wiring
constraints (by folding) and to performance constraints
by partitioning Adaptability to layout rules and wiring
constraints is also insured by a full procedural layout
definition of the PLA cell layout as well as electrical
representation for timing parameter extraction. Notice
also that, in case the PLA is embedded in a scan path,
also ATPG is provided using techniques described in
[61].

Figure 8b shows a straight forward standard PLA
but figure 8c shows a PLA with the same functionali-
ty adapted for floorplanner routing constraints.
Notice stretching for abutment in the routing en-
vironment.

Figure 9 shows a typical example of symbolic
layout whereby figure 9a is the stored symbolic
mother cell and figure 9b, c are two spaced instances
of the cell respectively for 5 >m and 3 jim technology
rules showing the adaptability feature of symbolic
layout. Figure 9c shows a hierarchical use of symbolic
cells which are composed by abutment and wiring
compaction to an 8 bit ’data-path for a signal
processor. This is a form of cell composition to be
discussed next.

3.3 CELL COMPOSITION TECHNIQUES. - Cell com-

position consists in the assembly of a parameterized
module from its primitive transistor cells in order to
generate layout, functional and timing models for
floorplanning and verification. The preferred techni-
que, in order to save area, is to obtain connection by
abutment or restricted routing over the cells. Gener-
ally a composition procedure consists of :

a) relative two dimensional-positioning rectangular
cells ;

b) cell orientation towards abutment by rotation and
mirroring operations ;

38

Fig. 8. - PLA generator PLASCO as an example of a

flexible procedural module generator. a. Block diagram of
software packages in PLASCO. b. Standard PLA. c. Folded
PLA subjected to wiring constraints and abutment causing
cell stretching.

Fig. 9. - a. Symbolically stored cell. b. Spacing for

5 03BCm design rules. c. Spacing for 3 fJ-m design rules.

d. Using the cells for composition of 8 bit data path.

c) symbolic routing of personality wiring over

(between cells) using routing functions (river, bus,
switchbox, channel routing procedures) ;

d) compaction of relative positioning to obtain abut-
ment by terminal move, abutment stretch and compac-
tion operations.

Notice that all of the above operations are definable
as functions operating on a list of objects. This forms an
almost natural application of functional and object
oriented programming. Therefore all composition, in
this authors opinion, is best done in a procedural,
interpretative way using e.g. a LISP environment.
Hereby one should be realistic enough to realize

that, to todays 32 bit 1..5 MIPS workstations, LISP
implementation very rapidly get out of hand due to
software type identification and poor virtual memory
management. Therefore, as long as LISP-like machines
remain too expensive [63] one should use the LISP
environment on a traditional workstation to do the

interpretative composition and call PASCAL or C
modules for the procedural operations. So until ca.

1989, when prices of AI machines will be competitive
with UNIX workstations and AI software will be

abundantly available [63], this remains a viable compos-
ition method on todays UNIX oriented workstations.
As an example we show in figure 10 a LISP interactive

cell composition procedure on a VAX 11/780 using the

39

Fig. 10. - LISP based cell composition of a RAM. a. Procedural interpretative relative placement of ramcells. b. After relative
positioning of symbolically designed decoder, sensing amplifiers and 2-bit decoders. c. Compaction causes abutment and
stretching of all cells. d. Layout function produces final layout.

DEC LISP and PASCAL environment under VMS,
and a 4 115 Tektronix colour graphics terminal. This
system is part of Cameleon [45] being developed at
IMEC under EEC Esprit 97 contract.

In such an interpretative environment the designer
first specifies the relative pla.ment of symbolic
(procedural) cells using the parameterized relative posi-
tion LISP function add-comp of a given type of cell at a
list of relative position functions of the parameters.

The LISP function, when instantiated for its para-
meters, calls interpretatively a graphics PASCAL
routine to show directly the relative cell positioning
defined in the add-comp function.
As a result, the designer has an immediate graphical

feedback to check the correctness of his (her) design.
Figure 10a shows the relative placement of 8 = 2 x

m (m = 4) columns of RAM cells and 2n - 1 -

8 (n = 4) rows of the RAM cell. In this case m is the
wordlength and n is the address width of the RAM.

Figure 10b shows the result after adding the relative
positioning of an n - 1 bit X-decoder, m (= 4) sensing
amplifiers and 2 bit Y decoders.

Figure 10c shows the result after the compact-x,
compact-y functions are executed while figure 10d

shows the result of the layout command which produces
the instantiated (m = 4, n = 4) RAM.

Notice that during the « compact » operations all
cells are fitted by abut and stretch operations. After
this interactive session a LISP program is available,
which, after compilation and test over the validity
range of parameters provides a new module generator
for the silicon compiler or system designer.

It is to be noted that after successful abutment also
an electrical, functional and timing model is available
as will be discussed next. The above clearly shows how
important advanced programming techniques are be-

coming, even for the traditional silicon designers.

3.4 EXPERT VERIFICATION SYSTEM. - In a module

generator the verification system must check correct-
ness during creation and adaptation and generate
functional and timing models during generation
phase.
Correctness means that, over the validity range of

parameters, connectivity, synchronism, functiona-

lity, timing and electrical behaviour (noise margins) are
maintained.

The traditional way of doing this is by simulation.

40

However simulation is a subjective test method
which depends entirely on the test patterns for the
problems already expected by the designer.

It is costly in CPU time and does not necessarily
detect unexpected problems which are the most

important to catch anyway.
It was therefore suggested by this author as early

as in 1981 [64] to use what is now called, rule based
systems to check circuits for correctness or to subject
them automatically to local guided simulation, in-

cluding the generation of testpatterns and the in-

terpretation of simulation results. The latter is

indeed part of the simulation cycle which is often
more costly in designers time than the actual CPU
time spent in simulation. (Dominance of intelligence
over blind number crunching !). In the mean time, in
an EEC microelectronics project MR03KUL a

prototype of such an expert system DIALOG [65] has
been created. Another such effort is e.g. the RUBBIC

[65] system developed in Berkeley. Many more are
under development now. First it is to be noted that an
expert system [28] differs strongly from a procedural
program in the sense that the introduction of new rules,
expression good design, in an expert system is done

very easily without a program rewrite or a redefinition
of a datastructure. This is necessary since modules are

designed according to a design style (e.g. circuit types,
clocking schemes, register types, testability, circuitry
etc...) which is to be expressed by a knowledge
engineer.

Rules can be expressed easily in so called object
oriented languages [39, 40], which are usually built
on top of LISP. These languages allow to define very
complex data types and their properties, relations
and attributes. Objects can inherit properties
through hierarchy and communication between
them can happen through messages, which do not
have to know the contents of the object to operate
on it.

In the expert debugging system DIALOG [65] the
language LEXTOC is implemented on top of LISP
which allows for a very powerful expression of rules
about MOS circuits.
An outline of the DIALOG program is shown in

figure 11. Based on a MOS transistor network, gener-
ated from the module generator, the user can start an
interactive or automatic verification procedure which
goes through the following stages :

3.4.1 Decompilation. - Hereby the MOS network is
first checked for valid circuit configurations. These are
the MOS circuits belonging to the given design style.
For example static CMOS using passive multiplexing
trees and level sensitive scan registers of prescribed
circuitry. All circuits violating these rules are flagged as
illegal. Then follows a high level timing verification.
Starting from the primary cloks, the derived clocks are
found and the register/combinational logic partitioning

Fig. 11.

is found. The validity of the clocking rules to insure
level sensitivity is verified. Violations are flagged and
explained. If applicable, design for testability rules are
also verified.

If all this has been checked and corrected, it is

possible to use user defined hierarchy in the procedural
interconnection description to extract the Boolean

description of the cells and to compare them to the logic
definition. This technique does render logic/switch
level simulation unnecessary and leads to a much

higher design reliability. Of course this supposes that
extraction is possible which imposes restrictions to the
design. These however are often coinciding with design
for testability rules.

In the future we believe that tricks at the circuit level
should be avoided in order to make design reliable and
fast. Complexity should be handled at the high level of
design not at the bottom.

Figure 12 shows an example of response of a the
DIALOG program to a clocking rule verification

request. The system has identified in red colour that a

Fig. 12. - Example of the use of DIALOG. The red path is
a possible race path because the clocks along the path have
the same phase.

41

loop exists containing only a single clockphase which
can lead to a race problem. Notice that the user

interface is quite essential to the success of a debugging
system. Back annotation to layout or schematic is

necessary just as a language debugger in software
indicates bugs at the appropriate statements in the

language.

3.4.2 Electrical rule checking. - This substitutes for
intensive SPICE like simulations. Hereby we search in
each primitive circuit configuration found under 1, for
illegal topological circuit configurations (open, short,
odd n- p-MOS configurations etc.). When all circuits
are acceptable circuit configurations, a checking is
made whether they produce the correct logic levels.
Therefore a large number of rules deals with capacitive
noise feedthrough, impedance ratios, charge redistribu-
tion effects both in dynamic and static circuits (capaci-
tive spikes). Most of these rules are simple i f (property,
relation) then (action) not involving heavy mathematical
analysis. Therefore three types of decision can result :
- Clear violation of a rule even by simple analysis :

direct action required by designer ;
- Problem below reliable threshold. Warning but

acceptable ;
- The problem needs quantitive evaluation. In such

case the DIALOG system will cut out the necessary and
sufficient subcircuit together with an appropriate testpat-
tern to check the problem by guided simulation. This
technique is very valuable since it requires only a small
modular circuit simulator and the designer does not
have to spend his (her) time in’specifying a testpattern.
It is often overlooked how much costly time is spent in
CAD/I/0. It does not help to speed up a CAD

program by a factor of ten if 1/0 is as slow as before.
Notice that this technique is also very well applicable to
the adapt phase. By storing all testpatterns as well as
the whole testprocedure (as metaknowledge) the next
generation of cells can be verified by the prestored
verification rules.

3.4.3 Timing verification. - When high level clocking
rules are satisfied, detailed timing can be verified.

Hereto first the timing of the clock edges of latches is
computed starting from the primary clock edge timing.
Then the combinational time spans are computed. In
the next step the critical path through combinational
logic blocks are searched. To this end we use a gradual
refinement technique. Using simple RC models first
the bulk of the shorter paths are eliminated. For the
remaining paths worst case test patterns for the gates in
the path are selected on a rule base. Using a circuit
simulation module delays are calculated automatically
and the worst case timing paths are identified. Finally
the logically impossible paths are eliminated and, if

requested, the most critical paths are cut out, test

patterns are computed and a detailed simulation is done
using a circuit simulator to compute accurate timing to

be compared to the time span allowable from the clock
analysis.
Again by using metarules it is possible to write

automatic timing procedures which will be called when
timing models are requested during the generate or
adapt phase. The technique can also be used to perform
effectively a number of exhaustive tests of a para-
meterized module during creation time in order to build
empirical parameterized timing models a within a given
validity range of the parameter set. The DIALOG

system has been programmed in a LISP-Pascal environ-
ment on VAX under VMS.

As discussed in [65], this leads to rather slow

programs on a VAX but it has been shown that under
certain restrictions it is easy to translate the system
automatically into a Pascal program which is capable of
analysing circuits at a rate of 50 k transistor/h. This
situation will change in the future when the cost of
LISP-machines will come down drastically.
The price of these machines will drop at a rate of

35 %/year [63] such that it is to be expected that by the
end of this decade object oriented programming
machines may substitute many o f the actual UNIX based
workstations.

Research on the application of expert systems in all
parts of CAD is rapidly progressing. In fact expert
systems are useful in all applications where design style
dependent heuristics have to be used. Below are given a
few already published areas of great promise.

1. Cell and module layout. Placement of transistors
in a cell which insures signal and power constraints in
order to obtain an optimally packed layout is the work
of layout experts using numerous common sense rules.
Recently rule based expert systems have been reported
both at the detailed layout level (TALIB [67]) and the
symbolic level (TOPOLOGIZER [68]).

2. Floorplanning, especially from the viewpoint of
placement and optimal interconnection from a perform-
ance viewpoint is also a rule based problem. Furth-
ermore many routing algorithms do not give 100 %
routing. In such cases the ,last difficult connections
could be made by a rule based system fed by the
experience of experts [69].

3. Design for testability. There is not just one

method to improve the testability of a design. A set of
techniques exists, which is context dependent. The
technique used depends strongly on the architecture
and the economic constraints. Therefore it is again
possible to formulate a set of rules which, based on all
these factors, generates modifications to a design in
order to improve its testability. A good example of such
a system is described by Abadir and Breuer [11].

Finally, a very important area where expert systems
go hand in hand with algorithmic systems can be found
in the area of synthesis which will be discussed in the
next section.

42

4. True silicon compilers. What does exist ?

As stated in section 2, the true silicon compiler
generates valid layout from a behavioural specification.
To our knowledge no such compiler is commercially
available yet, except perhaps for small finite state

automata.

On the other hand many of these compilers are under
development all over the world. The most successful
attempts that come close to manual layout are addres-
sing themselves to a rather specific target architecture.
As stated in [70] no single synthesis system will evolve
but as many as there are target architectures.
Below is given a short outline of todays research in

this area. Good review papers can be found in [71, 14,
72, 73].
The first true silicon compiler is probably the MAC-

PITIS compiler of MIT [74]. It produces a microcoded
processor based on a LISP like behavioural description
language. The resulting layout however has very poor
density and it is difficult to evaluate the performance of
the generated processor.
Based on the MAC-PITTS work, the SILC compiler

[75] is under development at GTE. Hereby attention is
paid to performance and the compiler is running from a
new hardware description language which, besides
behavioural constructs also contains structural and
relative placement constructs which are used as hints to
the compiler. It is implemented in the FLAVORS [39]
object oriented programming environment.
The tendency is now quite general to include such

pragmas to direct the compilation process in a target
direction. This is also the case in the Sili [76] compiler
recently announced by AT & T. In this compiler also
user defined heuristics are programmed as rules in an
expert system. The compiler maps directly into a target
architecture parts netlist and in microcode fields for the

generated dapapaths.
A lot of activity takes place in the area of compilation

of Digital Signal Processing (DSP) chips. In this respect
we mention the FIRST [77] silicon compiler for bit-
serial implementation of DSP circuits based on a block-
diagram like description of the algorithm. In the

Esprit 97 [78, 79] project a silicon compiler CATHE-
DRAL 1 for the automated design of wave digital
filters from specs to layout of bit-serial architectures
has been developed. It differs from the FIRST compiler
by the fact that also the filter design and optimization
part is included. At the University of Berkeley a similar
program LAGER [80] is operative for the direct

implementation of DSP algorithms at the block diagram
level into add-shift multiprocessor bit-parallel structur-
es. The design level is now being extended to the
algorithmic level based on an applicative language
SILAGE [18].
The use of artificial intelligence techniques is likely

to have a strong influence on silicon compilation. This
respect we refer to the pioneering work going on at
Carnegie-mellon University [81] and AT & T [20]. A

general approach to silicon compilation which addresses
a wide range of architectures is the Yorktown Silicon

Compiler developed at IBM and reported in detail in
[82] ..

Last but not least, a lot of excellent work in the area
of high level architectural synthesis is going on at the
University of Karlsruhe [83] (CADDY) and Kiel [84]
(MIMOLA).
The wide range of activities in this field indicate that

there is good hope that true silicon compilation will
lead to very efficient commercial packages that will
allow to make the one month system chip a true fact by
the end of this decade. An important aspect again will
be the acceptability of the system designers of high
level formal language specification for what used to be
hardware design. The role of universities in a continued
education role is of great importance in this respect.

5. Conclusions.

The design of complete application specific systems on
a chip will become possible thanks to a so-called meet-
in-the middle design strategy whereby system design is
separated from silicon design.

This will only be possible if both silicon as well as

system design are more formally based on software
design principles. Programming environments for sili-
con modules are now becoming commercially available.
In order to achieve another major breakthrough a lot of
research effort is necessary in the area of high level
architectural synthesis and automated design for tes-
tability.

In all these areas a lot of heuristic expert knowledge
leads to the best solutions. Therefore the use of expert
system techniques will make its inroads in the CAD
area. This will only be economically justified when, as
expected, the price of LISP-like machines will decrease
by a factor of five. This is expected to happen by the
end of this decade. At that point AI workstations will
take over from the actual UNIX based machines. On
these machines the best of algorithmic programming in
PASCAL or C will be combined with object oriented
programming styles for the rule based heuristic parts.
These expert systems are extremely important in view
of the shortage of VLSI design talent.

Universities will have a very important role to play in
(re)-educating designers towards a much more software
and formalism oriented design style whereby correct-
by-construction methods should prevail over the more
traditional design tricks used so abundantly in the past.
In Europe more in particular, one must stimulate

cooperation between Electrical Engineering and Com-
puter Science departments. Relevant research is only
possible by the formation of centres of excellence

whereby academia, researchers and students are

cooperating on large visionary projects devoted to

relevant problems of the future and covering several
disciplinary levels.

In this respect a cooperation of such groups with

43

industry is very necessary to keep projects realistic but
also to bootstrap industry towards more progressive
attacks of the numerous problems.

Last but not least, we should find a mechanism in
Europe which stimulates new ventures for small com-
panies based on promising academic or industrial
research. This author believes that such mechanism
needs to be based more on private capital (perhaps of
the bigger companies) than on governmentally spon-
sored research. The latter is indeed performing its role
as a starter of new ideas very well but the effort to
transform an idea into a product is to be undertaken by
small start-ups which can hardly get funded in the

existing financial system. A solution is urgently required
in order to get economical results out of public funding.
A closer look at the US or Japanese system is very
useful in that respect.

Acknowledgments.
All views expressed in this paper are the result of
numerous discussions with collegues all over the world.
In particular however they are the results of a joint
view within the IMEC research group and of the

partners in the Esprit 97 and the MR03KUL EEC
microelectronics project. I thank all who have contri-
buted to the ideas exspressed in this paper.

References

[1] KESSLER, A. J. et al., Standard Cell VLSI Design : A
Tutorial, IEEE Circuits Devices Mag. 1, No. 1,
(1985) 17-34.

[2] MARINO, J. T., Low-Cost Hardware Logic
Simulator/Fault Grade Machine, Proceedings of
the IEEE Custom Integrated Circuits Con-

ference, p. 242-244, Rochester, New York,
May 21-23, 1984.

[3] CRAWFORD, J., An Electronic Design Interchange
Format, Proceedings of the ACM/IEEE 21st

Design Automation Conference, p. 683-685, Al-
buquerque, New Mexico, June 1984.

[4] NEWTON, A. R., Timing, Logic and Mixed-Mode
simulation for large MOS IC’s, Nato Advanced
Study Institute Series, E-48, Sijthoff & Noor-

dhoff, p. 175-239, 1981.
[5] PAULINE et al. , A Timing Verification System Based

on Extracted MOSVLSI Circuit Parameters, Pro-

ceedings of the 18th Design Automation Con-
ference, p. 288-292, 1981.

[6] OOSTERHOUT, J. K., Crystal : A Timing Analyser for
nMOS VLSI Circuits, Proceedings Third Caltech
Conference on VLSI, R. Bryant ed., Computer
Science Press, p. 57-70, 1983.

[7] OOSTERHOUT, J. K., Switch-Level Delay Models for
Digital MOS VLSI, Proceedings ACM/IEEE
21st Design Automation Conference, p. 542-
548, Rochester, New York, May 21-23, 1984.

[8] TUCKER, B. W., Electronic CAD/CAM. Is it Revolu-
tion or Evolution, Proceedings 22nd ACM/IEEE
Design Automation Conference, p. 830-834, Las
Vegas, Nevada, June 23-26, 1985.

[9] KOENEMAN, B. et al., Built-in Logic Block Observa-
tion Techniques, Digest 1979 Test Conference,
79CH1509-9C, p. 37-41, October 1979.

[10] WILLIAMS, T. W. et al., Design for Testability. A
Survey, IEEE Trans. Comput., C-31, No. 1

(1982) 2-15.
[11] ABADIR, M. S. et al., A Knowledge Based System for

Designing Testable VLSI Chips, IEEE Design
Test Comput., 2, No. 4 (1985) 56-68.

[12] SAIGO, T. et al. , A Triple-Level Wired 24K Gate
CMOS Gate Array, Digest of Technical papers

of the International Solid-State Circuits Con-

ference, ISSCC-85, p. 122-123, February 1985.
[13] KASAI, R., FUKAMI, K. et al., An Integrated Modular

and Standard Cell VLSI Design Approach,
IEEE Solid-State Circuits, Vol. SC-20, No. 1
(1985).

[14] SANGIOVANNI-VINCENTELLI, A., An Overview of
Synthesis Systems, Proceedings Custom Inte-

grated Circuits Conference, CICC-85, p. 221-
225, May 1985.

[15] BURIC, M. et al., The Plex Project: VLSI Layouts of
Microcomputers Generated by a Computer Prog-
ram, Proceedings IEEE International Confer-
ence on Computer-Aided Design, ICCAD-83,
p. 49-50, 1983.

[16] Fox, J., SURACE, G. et al., A Self Testing 2 Micron
CMOS Chip Set for FFT Applications, Digest of
Technical Papers of the 11th European Solid-
State Circuits Conference, p. 13-24, Toulouse,
France, September 16-18, 1985.

[17] KOOMERS, MOTO-AKA, Proceedings of the 7th Inter-
national Conference on Computer Hardware De-
scription Languages (North-Holland) 1985.

[18] HILFINGER, P., A High-level Language and Silicon
Compiler for Digital Signal Processing, Proceed-
ings 1985 IEEE Custom Integrated Circuits

Conference, CICC-85, p. 213-216, Portland,
Oregon, May 20-23, 1985.

[19] FELDBRUGGE, F. H. J., VLSI and Petri-nets, Nato
Advanced Study Institutes Series E-47 (Sijthoff
& Noordhoff) 1982, p. 285-300.

[20] KOWALSKI, T. J., THOMAS, D. E., The VLSI Design
Automation Assistant : What’s in a Knowledge
Base, Proceedings of the 22nd ACM/IEEE De-
sign Automation Conference, p. 252-258, Las
Vegas, Nevada, June 23-26, 1985.

[21] KOWALSKI, T. J., GEIGER, D. J., The VLSI Design
Automation Assistant : A Birth in Industry, Pro-
ceedings of the 1985 International Symposium
on Circuits and Systems, p. 889-892, Kyoto,
Japan, June 5-7, 1985.

[22] SOUKUP, J., Circuit Layout, Proc. IEEE, 69, No. 20
(1981) 1281-1304.

44

[23] LAUTHER, U., A Min-Cut Placement Algorithm for
General Cell Assemblies Based on a Graph
Representation, Proceedings of the 14th Design
Automation Conference, p. 1-10, June 1979.

[24] KIRCKPATRICK, S. et al., Optimization by Simulated
Annealing, Science 220 (1983) 671-680.

[25] ANTOGNETTI, P., ARATO, G. et al., ARIANNA : A
Floor-Planning Tool, Technical Digest of papers
of the 11th European Solid-State Circuits Con-
ference, Toulouse, France, September 16-18,
1985.

[26] TRIMBERGER, S. et al., Automatic Layout in an Open
Design System, VLSI Design, p. 88-98, May
1985.

[27] BURIC, M. et al., Silicon Compilation Environments,
Proceedings IEEE Custom Integrated Circuits
Conference, p. 208-212, May 1985.

[28] HAYES-ROTH et al. , Building Expert Systems
(Addison-Wesley) 1983.

[29] YOUNG, J., IC-Design Automation strides into Sili-
con Compilation Era, Electronics (1985) 58-63.

[30] BARTHOLOMEUS, M. et al. , PLASCO : A Procedural
Silicon Compiler for PLA Based Systems, Pro-
ceedings of the IEEE 1985 Custom Integrated
Circuits Conference, p. 226-229, 1985.

[31] PATIL, S. A. et al. , A Programmable Logic Approach
for VLSI, IEEE Trans. Comput. C-28 (1979)
594-601.

[32] WEINBERGER, A., Large Scale Integration of MOS
Complex Logic, IEEE Solid-State Circuits SC-2
(1967) 182-190.

[33] WING, O., HWANG, S. et al., Gate Matrix Layout,
IEEE Trans. Comput.-Aided-Design Integrated
Circuits Syst. CAD-4, No. 3 (1985) 220-231.

[34] KANG, S. et al. , Gate Matrix Layout of Random
Control Logic in a 32-bit CMOS CPU Chip
Adaptable to evolving Logic Design, IEEE
Trans. Comput.-Aided-Design CAD-2 (1) 1983.

[35] PIQUET, C., Design Methodology for Full Custom
CMOS Microcomputers, Integration VLSI J. 1,
No. 4 (1983) 335-350.

[36] CHUQUILLANQUI, S., PAOLA : A Tool for Topologi-
cal Optimization of Large PLAs, Proceedings of
the Design Automation Conference, p. 300-306,
Las Vegas, June 1982.

[37] VANDEN MEERSCH, E., HILARICS Manual, Report
5-B3-1 of the Report No. 5 on MR-03-KUL
EEC Report. Available from IMEC, April 1985.

[38] WINSTON, P., HORN, B., LISP (Addison Wesley)
1981.

[39] Symbolics Inc., Reference Guide to Symbolics-LISP,
March 1985, p. 417-441.

[40] GOLDBERG, RUBSON, SMALLTALK-80: The Lan-
guage and its Implementation (Addison-Wesley)
1983.

[41] MATHESON, T. G. et al., Embedding Electrical and
Geometrical Constraints in Hierarchical Circuit-

layout Generators, Proceedings IEEE Interna-
tional Conference on Computer-Aided Design,
p. 3-5, Santa Clara, California, September 12-
15, 1983.

[42] MULLER, B. et al., The Chipgenerator Concept. A
New Approach to Full Custom CMOS IC Design,

Proceedings of the 11th European Solid-State
Circuits Conference, p. 186-192, Toulouse,
France, September 16-18, 1985.

[43] BATALI, J., HARTHEIMER, A., The Design Procedure
Language, A.I. Memo No. 598, MIT, September
1980.

[44] KUCHINSKI, A., ICPL Integrated Circuit Procedural
Language, Proceedings of the IEEE ICCD-84
Conference, October 1984.

[45] RIJNDERS, L. et al. , Cameleon Version 1.1, Users

Guide, Report nr. 5-C1-3 of EEC project MR-
03-KUL, Available from IMEC.

[46] SORENS, M. J. et al., Using ICPL : A Programmatic
IC Design language, Proceedings of the
ACM/IEEE Compcon Conference, September
1984.

[47] KRAAK, M., KOOPMANS, J. M. et al., Cell Layout
Library Parameterization, Digest of Technical
Papers of the 11th European Solid-State Circuits
Conference, p. 257-262, Toulouse, France, Sep-
tember 16-18, 1985.

[48] HSUEH, M. Y. et al., Computer-Aided Layout of LSI
Circuit Building Blocks, Proceedings of the Inter-
national Symposium on Circuits and Systems
Conference, p. 474-477, July 1979.

[49] DEVECCHI, D. et al., Symbad : A Tool for a New
Layout Methodology, Proceedings IEEE 1985
Custom Integrated Circuits Conference, p. 64-

67, Portland, Oregon, May 20-23, 1985.
[50] WESTE, N., Virtual Grid Symbolic Layout, Proceed-

ings of the 18th Design Automation Conference,
Nashville, p. 225-233, June 1981.

[51] WESTE, N., MULGA 2014 An Interactive Symbolic
Layout System for the Design of IC’s, Bell

System Techn. J. 60, No. 6 (1981) 823-858.

[52] ROSENBERG, J. et al., A Vertically Integrated VLSI
Design Environment, Proceedings of the 20th
Design Automation Conference, p. 31-38, June
1983.

[53] WESTE, N. et al. , Principles o f CMOS VLSI Design :
A Systems Perspective (Addison-Wesley) 1985,
Chapt. 7.

[54] VAN VLIERBERGHE, S. et al. , Symbolic Hierarchical
Artwork Generation System, 22nd ACM/IEEE
Automation Conference, p. 789-793, Las Vegas,
Nevada, June 23-26, 1985.

[55] OOSTERHOUT, J., The MAGIC VLSI Layout System,
IEEE Design Test Comput. 2, No. 1, (1985) 19-
30.

[56] BERGMANN, N., Move 2014 A Useful Primitive for a
Variety of IC CAD Tools, Digest of Technical
Papers of the 11th European Solid-State Circuits
Conference, p. 178-185, Toulouse, France, Sep-
tember 16-18, 1985.

[57] DE MICHELI, G., Kiss : A Program for the Optimal
State Assignment of Finite State Machines, Pro-
ceedings of the 1984 International Conference
on Computer-Aided Design, p. 209-212, Santa
Clara, USA, November 1984.

[58] BRAYTON, R. et al., Logic Minimization Algorithms
for VLSI Synthesis (Kluwer Academic Pub-

lishers) 1984.

45

[59] BROWN, D. W., A State-Machine Synthesizer SMS,
18th Design Automation Conference, p. 301-
305, June 1981.

[60] BARTHOLOMEUS, M. et al. , Prestol-II : Yet Another
Logic Minimizer for Programmed Logic Arrays,
Proceedings of the 1985 International Sym-
posium on Circuits and Systems, p. 447-450,
Kyoto, Japan, June 5-7, 1985.

[61] OSTAPKO, D. L. et al., Fault Analysis and Test
Generation for PLA’s, IEEE Trans. Comput. ,
C-28, No. 9, 1979.

[62] ZINSNER, R. et al., Technology Independent Symbolic
Layout Tools, Proceedings of the IEEE Interna-
tional Conference on Computer-Aided Design,
p. 12-13, September 1983.

[63] MANUEL, T., The Pell-Mell Rush into Expert Sys-
tems, Electron. (1985) 54-59.

[64] DE MAN, H., Mixed-Mode Analysis and Simulation
Techniques for Top-Down MOSVLSI Design,
Proceedings of the 1981 European Conference
on Circuit Theory and Design, 5-10, 1981.

[65] DE MAN, H. et al., Dialog : An Expert Debugging
System for MOS VLSI Design, IEEE Trans.
Computer-Aided Design, CAD-4, No. 3 (1985)
303-311.

[66] LOB, C. et al., Circuit Verification using Rule-Based
Expert Systems, Proceedings of the International
Symposium on Circuits And Systems, p. 881-

884, Kyoto, Japan, June 5-7, 1985.
[67] KIM, J. et al., TALIB : An IC Layout Design Assis-

tant, Proceedings of the AAAI Conference,
p. 197-201, Washington, 1983.

[68] KOLLARITSCH, P., WESTE, N., Topologizer: An
Expert System Translator of Transistor Connec-
tivity to Symbolic Cell Layout, IEEE J. Solid-
State Circuits SC-20, 3 (1985) 799-804.

[69] FUJITA, T. et al., Knowledge base and Algorithms for
VLSI Design, Proceedings of the 1985 Interna-
tional Symposium on Circuits and Systems,
p. 877-880, Kyoto, Japan, June 5-7, 1985.

[70] FREHEL, J., A Formalism for Logical and Electrical
Design, Technical Digest of Papers of the 11th
European Solid-State Circuits Conference, p.
177-178, Toulouse, France, September 16-18,
1985.

[71] ELMASRI, M., Digital VLSI Systems, (IEEE Press)
1985, part II, p. 120-240.

[72] NEWTON, A. R., Techniques for Logic Synthesis,

Proceedings of the VLSI-85 Conference, p. 27-
42, Tokyo, Japan, August 1985.

[73] GOLDBERG, A. et al., Approaches Toward Silicon
Compilation, IEEE Circuits Devices Mag. 1,
No. 3, (1985) 29-39.

[74] SOUTHARD, J., Mac Pitts : An Approach to Silicon
Compilation, IEEE Comput., 16 (1983) 74-82.

[75] BLACKMAN, T. et al., The SILC SILIcon Compiler :
Language and Features, Proceedings of the 22nd
Design Automation Conference, p. 232-237, Las
Vegas, Nevada, June 23-26, 1985.

[76] KAHRS, M., An Overview of SILI (a Silicon Com-
piler), Proceedings of the VLSI-85 Conference,
p. 43-53, August 1985.

[77] DENYER, P. et al., A Silicon Compiler for VLSI
Signal Processors, Proceedings of the 1982

European Solid-State Circuits Circuits Con-

ference, ESSCIRC 82, September 1982.
[78] DE MAN, H. et al., Custom Design of a VLSI PCM-

FDM Transmultiplexer from System Specs to

Layout using a CAS System, Proceedings Esprit
Technical Week, September 1985.

[79] DE MAN, H. et al. , Development of a CAD Methodol-
ogy for VLSI Signal Processing Devices using
multiprocessing Architectures, Proceedings Esprit
Technical Week, September 1985.

[80] RABAEY, J. et al. , An Integrated Automated Layout
Generation System for Digital Signal Processing
Circuits, Proceedings of the Custom Integrated
Circuits Conference, p. 217-220, May 1985.

[81] RAJAN, J., THOMAS, D. E., Synthesis by Delayed
Binding of Decisions, Proceedings of the 22nd
ACM/IEEE Design Automation Conference,
p. 367-373, Las Vegas, Nevada, June 23-26,
1985.

[82] BRAYTON, R. et al. , The Yorktown Silicon Compiler,
Proceedings of the 1985 International Sym-
posium on Circuits and Systems, ISCAS-85, p.
393-394, June 1985.

[83] ROSENSTIEL, W. et al., Synthesizing Circuits from
Behavioral Level Specifications, Proceedings of
the 7th Conference CHDL-85, p. 391-403, To-
kyo, Japan, August 1985.

[84] MARWEBEL, P., The MIMOLA Design System :
Tools for the Design o f Digital Processors, Pro-
ceedings of the 21st ACM/IEEE Design Auto-
mation Conference, p. 587-593, Albuquerque,
new Mexico, June 25-27, 1984.

