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The transmission of intense transient and multiple frequency
sound waves through orifice plates with mean fluid flow*

A. Cummings and I.-J. Chang

Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, MO 65401, U.S.A.

(Reçu le 20 mai 1985, révisé le 25 octobre, accepté le 12 novembre 1985)

Résumé. 2014 Nous présentons ici un modèle d’écoulement non visqueux, qui décrit la transmission des ondes sonores
intenses à travers des tôles perforées avec écoulement moyen d’un fluide à travers les orifices, normal à la tôle.
La dépendance en temps dans l’onde acoustique est arbitraire, et les équations différentielles qui régissent l’écoule-
ment des orifices sont résolues dans le domaine temporel. Nous remarquons que la vitesse d’écoulement moyen
et la perturbation de la vitesse du fluide dans l’orifice sont toutes les deux contenues dans un terme de résistance
hydrodynamique dans les équations de base et que les pertes d’énergie acoustique dépendent de ces quantités.
Nous comparons les prévisions théoriques de la transmission du son à travers les tôles perforées avec les données
mesurées, et en général nous les trouvons toutes les deux en bon accord.

Abstract 2014 A inviscid flow model is presented here, describing the transmission of intense sound waves through
perforated plates with mean fluid flow through the orifices, normal to the plate. The time dependence in the acoustic
wave is arbitrary, and the differential equations governing the orifice flow are solved numerically in the time domain.
It is noted that both the mean flow velocity and the orifice velocity perturbation are contained in a hydrodynamic
resistance term in the governing equations, and that acoustic energy losses are dependent on these quantities.
Comparison is made between theoretical predictions of sound transmission through orifice plates and measured
data, and the agreement is found to be generally good.
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1. Introductiom

There are several types of device, from « reactive »
silencers in the exhaust systems of internal combustion
(I.C.) engines to orifice flow meters in gas pipelines,
in which intense sound waves are transmitted through
perforated plates having mean fluid flow through the
perforations. It is well known that both high acoustic
amplitude and mean flow can independently bring
about the conversion of acoustic energy into vortical

energy, with subsequent dissipation of the sound
energy into heat. This occurs because of the inter-
action between a superimposed sound field and a free
shear layer, caused either by a high velocity acoustic
flow (in the absence of a mean flow) or by a mean flow,
separating upon encountering a sharp edge. This
interaction also manifests itself in other transmission

properties of the perforated structure, such as the
acoustic impedance (in the case of periodic excitation).
Sivian [1] was perhaps the first worker to note the

(*) This work was supported by the National Science
Foundation under Research Grant MEA 8312399.

nonlinear impedance of orifices subjected to high
amplitude sound fields in the absence of mean flow.
Ingard and Ising [2] investigated both high amplitude
acoustic impedance effects and mean flow effects at
orifices, and found that high acoustic amplitude (with
zero flow) and mean flow (at low acoustic amplitude)
had similar effects in bringing about an increase in
orifice resistance, over and above its linear, zero flow
value. In the presence of both mean flow and high
amplitude sound waves, however, the orifice flow field
became rather more complicated, and different effects
were noted in opposite flow half-cycles. A number of
other workerve has investigated the interaction bet-
ween intense sound waves and orifices, more or less
thoroughly. Hersh and Rogers [3], for example, gave a
relatively detailed treatment of the acoustic impe-
dance of orifices at low and high amplitudes with zero
mean flow, and used a locally spherical inflow model
that was an improvement on the parallel flow assump-
tion made by certain other workers. In other work,
investigators have concentrated on the acoustic energy
loss mechanisms (as opposed to the impedance)
involved in the interaction between a sound field and a
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free shear layer. Bechert [4] and Howe [5], for example,
reported significant experimental and theoretical stu-
dies (respectively) of this phenomenon.

In the majority of published works on acoustic
interaction with sharp edges - with and without
mean flow - it has been assumed that either the sound

pressure or the particle velocity varied harmonically
with time. Exceptions to this are a report by Rice [6]
and a paper by Cummings [7], and in both of these
pieces of work the differential equation governing
the fluid flow in an orifice was solved numerically,
for an arbitrary time variation of the forcing pressure.
An experimental study of the transmission of high
amplitude impulsive sound waves through duct ter-
minations (nozzles and orifice plates) is reported by
Salikuddin and Ahuja [8], and Cummings and
Eversman [9] offered theoretical explanations of the
observed acoustic energy deficit across the termi-

nation, though on the basis of a frequency-domain
analysis.

Single frequency analyses of the interaction of
intense sound waves with perforated structures have
an inherent disadvantage : even in the presence of
mean flow through the perforations, significant non-
linear effects can occur, producing harmonic distortion
of (for example) a sinusoidal forcing pressure field.
If the driving pressure were complex and periodic,
then nonlinear inter-harmonic interaction effects
would occur. In the case of a non-periodic (for example,
transient or random) signal, then rather more com-
plicated nonlinear effects take place. A frequency
domain analysis cannot readily cope with these

phenomena, but a numerical time domain (NTD)
solution can be applied for any arbitrary time variation
of the forcing pressure.

Accordingly, this paper deals with a time domain
solution for the transmission of intense sound waves

through a perforated plate with mean fluid flow
through the perforations, travelling normally to the
plate. The effects of both high acoustic particle velocity
and of mean flow are incorporated into the theoretical
model, and (as examples) both transient and complex
periodic acoustic signals are examined Comparison
is made between the experimentally measured trans-
mission properties of orifice plates under various flow
conditions, and numerical predictions. Although
details of the orifice flow field - such as ring vortices -
are suppressed in the present model, other important
features, for example the transfer of acoustic energy
into vortical energy (with associated dissipation),
and nonlinear and mean flow dependent impedance
effects, are implicitly contained within the approach
described here.

2. Theory.

In the absence of mean flow, the NTD method reported
by Cummings [7] suffices to give good predictions of
the acoustic transmission properties of perforated
plates subjected to intense sound fields.

When mean flow is present, however, a somewhat
modified approach must be taken, as follows. The
fluid pressure and velocity in the neighbourhood of
the perforated plate are split into a time-averaged
component and an acoustic perturbation, respectively
as

where the prime denotes the perturbation ; the velocity
component of interest here is always that normal to
the orifice plate and so the normal velocity may
simply be written as v = V + v’, with an appropriate
sign convention. It is necessary to use two distinct
theoretical models for the sound transmission process :
one where the velocity in the orifice is in the same
direction as the time averaged velocity V, and the
other where there is « reverse flow », and the orifice
velocity opposes the direction of V.

Figure 1 shows the geometry of the system. For
simplicity, the perforated plate is shown as being an
orifice plate having a single hole (of area Ao), and
located in a tube (which may be considered circular)
of cross-sectional area A. This does not have to be the

case, and multiple holes could be accommodated
either by envisaging a multiply perforated plate in a
tube or else by imagining a « bundle » of tubes, each
containing a singly perforated plate, and replacing
the tube walls (which would have to be of such a
shape - for instance square - as to fit together) by
stagnation stream tubes in an inviscid flow. The sign
convention for velocity is positive for a left to right
flow. The mean fluid flow goes from left to right, and
it is assumed that a jet is formed by separation of the
mean flow boundary layer, and that a vena contracta
(of cross-sectional area Avc) exists in the jet. Two
locations are indicated, 1 before the mean flow stre-
amlines converge on the orifice, and 2 at the vena
contracta. In what follows, it is assumed that only
the plane acoustic mode can propagate in the tube.
It is further assumed that the sound source is at the

upstream side of the orifice (since this would normally
be the case in practice), though the opposite situation
could easily be accommodated if necessary.

Fig. 1. - An orifice plate with mean flow.
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2 .1 POSITIVE ORIFICE FLOW. - The discussion diverges
now into consideration of the separate models, as
mentioned above. We first examine the case where
the instantaneous orifice flow goes from left to right.
The object of the exercise here will be to find the

pressure perturbation, p2, at station 2, for a prescribed
driving pressure pi and for a prescribed geometry and
mean flow speed in the orifice.
We ignore viscous effects in the theoretical deve-

lopment here, because of the relatively high Reynolds’
numbers involved (typically at least 1 000, based on
orifice diameter), and fluid viscosity is only implied
inasmuch as boundary layer separation is assumed
to take place at sharp edges. The hydrodynamic
resistance, in the presence of either mean flow or high
amplitude (or both), completely swamps the viscous
resistance of the orifice. Bernoulli’s equation may be
written for streamlines between planes 1 and 2, in an
unsteady in compressible flow,

the subscripts denoting position and 03C10, ~ being the

fluid density and velocity potential (1) respectively
(we define v = VO). This equation is taken to describe
the instantaneous hydrodynamic flowfield in and
near the orifice. Provided the acoustic wavelength 03BB0
is greater than about twice the width of the tube, the
assumption of incompressibility is valid (2). If the mean
and fluctuating flow components are taken to occupy
the same region, then one may use the continuity
equation to write

where the subscript 0 refers to the orifice, 6 (the
fractional open area of the plate) is equal to Ao/A
and Ce is a contraction coefficient, equal to Avc/A0.
Equations (3) may be combined with (2) to give

Taking the time average of (4) and subtracting it from equation (4) yields

the overbar denoting a time average. The third term
on the left hand side of(5) is associated with a resistive
pressure, brought about partly by the mean flow
(the 2 Vo 03C5’0 term in parentheses) and partly by the
fluctuating flow (the v’ 0 1 v’ 0 1 term) interacting with
the velocity perturbation in the orifice. We note that
the nonlinear resistance term contains | 03C5’0 | 1 rather
than v’, to ensure that the term has the correct sign
as 03C5’0 varies between positive and negative values.
The fourth term on the left hand side of(5) represents
a reactive pressure associated with the « attached
mass » of the orifice ; physically, this is caused by the
concentration of acoustic kinetic energy in and around
the orifice. The reactive pressure may alternatively

Fig. 2. - The control volume for downstream radiation.
REVUE DE PHYSIQUE APPLIQUÉE. - T. 21, N° 2, FÉVRIER 1986

be expressed as po l’0, where 1 is the « mass end
correction » of the orifice (3).

It is now necessary to relate p2 to the orifice velocity
perturbation 03C5’0. The control volume shown in figure 2
is utilized here. It is assumed that the mean fluid flow
forms a uniform jet as shown, surrounded by sta-
tionary fluid. Then the acoustic pressures and particle
velocities in regions 3 and 4 may be related as follows

(1) Velocity potential does not, of course, exist in a rota-
tional flow and ~2 is assumed to be defined only in the jet
core where the vorticity may reasonably be put to zero.

(2) Exclusively plane wave propagation in the tube is

assured, and 03BB0 is much greater than the orifice dimensions,
so the velocity field near the orifice is all of the same phase.
As long as the acoustic density fluctuations are small com-
pared to the mean fluid density, the flow is then essentially
incompressible.

v being the fluid velocity in streamline coordinates and s
the direction along the streamline. If the attached mass of
fluid in and around the orifice is assumed to vibrate like
an equivalent uniform plug of length l, containing all of the
kinetic energy in and near the orifice, then the above integral
is clearly equal to 1 aVs/ot, that is, l’0.

12
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[10], if no acoustic reflection takes place to the right of
the orifice plate :

if p’4 = p’3 (which was shown to be approximately
true in reference [10], even for quite high subsonic
Mach numbers) ; here co is the speed of sound, M is
the mean flow Mach number in the jet, = V21CO-
The quantity K is equal to cx/co, where Cx is the

propagation speed of the coupled wave system in the
jet flow and in the surrounding stagnant fluid (x is the
axial coordinate; see Fig. 2). To find K, one should
solve an eigen-equation involving Bessel functions
(if the tube is circular) [10], but here we may use a
simpler interpolation formula, as follows. Define

il = 03C3Cc ; then if ~ ~ 0, K = 1 (corresponding to an
infinitesimally narrow jet), whereas if q - 1, K =
1/(1 + M) (corresponding to a jet that fills the whole
tube). Then we may write an interpolation formula

Cummings and Haddad [11] investigated the entropy
fluctuations occurring when a sound wave is trans-
mitted through a sudden area expansion in a pipe
containing mean fluid flow, and showed that these
are actually very small, so pressure and density
fluctuations may be related isentropically, to good
accuracy. Thus

where p’ is the density perturbation.
The quasi-steady continuity and momentum equa-

tions in the perturbed pressure, density and velocity,
for the control volume, are now linearized (because
we assume the acoustic field away from the orifice
to be linear). If the pressure perturbation over the
entire left hand side of the control volume is equal to p’2
(this assumption is reasonable on the basis of parallel
streamlines, and also has extensive expérimental
justification), then the linearized equations may be
combined to give the simultaneous equations

where

Equations (9a, b) and (3f) now yield

where

We may now write (5) as a differential equation
in 03C5’0 by substituting po lài for the reactive pressure
and utilizing equation (11a),

Provided appropriate values of 1 and Cc can be chosen,
equation (12) may be solved numerically for an

arbitrary time-variation of p’. The transmitted pres-
sure p2 may the be found from (lla). The second
term on the right hand side of ( 12) appears to present
a problem, but its value may be found by iteration.
Initially this term is put equal to zero, and the equa-
tion is solved. Then the values of 03C5’0 so obtained
are used to find a new value for the term. The equation
is solved again, and so on, until the process converges.
Further discussion of the role of the time averaged
term will be postponed until section 4.

Equations (6a, b) are, of course, only valid for a
reflection-free termination. In any other situation,
appropriate alternative expressions would have to be
employed.

2.2 NEGATIVE ORIFICE FLOW. - The case considered
here is where flow reversal occurs, and - 03C5’0 &#x3E; Yo.
It is assumed that the reverse orifice flow separates,
forming a jet that is directed to the left (we refer to
Fig. 1). We further assume that a vena contracta, of
area Avc, is formed in this jet. Now the velocity per-
turbation v2 may be taken to be uniform across the
pipe (since plane 2 is temporarily on the upstream side
of the orifice), whereas the mean flow is still that shown
in figure 1 ; the mean flow contraction coefficient

Cco may be put equal to a typical value of 0.61 in this
case. Then, the continuity equation leads to the

relationships

Equations (13a-d) may be combined with (2) to give
the equivalent of equation (4). The time average of
this is taken and subtracted from the equation itself.
Equation ( 11 a) still describes the downstream radiation
(since the mean jet flow still exists, albeit in a birefly
interrupted form), and finally an equation of motion
may be written down,
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As was the case with equation (12), equation (14)
may be solved if values of 1 and Ce can be specified
We note that if Cc ~ Cco (as would normally be the
case), the resistive term arising from the mean flow
is almost completely suppressed here. This is in sharp
contrast with equation (12).

Despite the various complications involved with
equations (12) and (14), the sine qua non of the physical
process is that the fall in pressure as the fluid accelerates
to pass through the orifice, together with the fact that
« pressure recovery » of the fluid outflow does not
occur (because of the flow separation at the orifice),
brings about a hydrodynamic resistance in the orifice
transmission process. The energy absorption mecha-
nism associated with this resistance is the conversion
of acoustic energy into vortical energy via the inter-
action of the acoustic flow with the free shear layer
in the orifice outflow.

2.3 NUMERICAL SOLUTION TO EQUATIONS OF MOTION. -

The fourth order Runge-Kutta method was used to
solve equations (12) and (14) in the time domain.
The forcing pressure pi was either transient, or

complex and periodic, but began from zero at a given
time. Thus the signal was « switched on » at that
time. In the Runge-Kutta scheme, an initial value of v’o
is required, and the causality requirement dictated
that vô should be zero at the switching on time, when
pl was also zero.

In the case of transient signals, pl versus time t was
specifled over the duration of the signal, and the
solution was allowed to proceed until the transmitted
pressure had settled almost to zero.
With complex periodic signals, p’ versus t for a

single cycle was specified, beginning at a time when
p’1= 0. The signal was switched on at the beginning of
a cycle, and then pi was made to go through a series
of additional, identical, cycles. A steady-state solution
for the transmitted pressure was reached after several

cycles, and it was found that the solution had always
reached a steady state by the seventh cycle, which
was then taken as being representative.
As well as the transmitted pressure-time history,

the spectrum of p2 is of interest, and this was found
by a fast Fourier transform (FFT) routine, and

expressed either as a discrete Fourier transform, in the
case of a transient signal, or as a Fourier series in the
case of a complex periodic signal.
During the Runge-Kutta integration process, equa-

tion (12) was taken as the governing differential

equation whenever - 03C5’0  V o. If - vi a Vo, equa-
tion (14) was solved. These inequalities were monitored
at each integration step and appropriate action taken.
The mass end correction 1 merits brief mention here.

In the absence of mean flow, 1 would be given (see
for example the paper by Ingard [12]) by the expression

Do being the orifice diameter and to the orifice thick-

ness. When mean flow through the orifice occurs,
normal to the plate, the rotational nature of the flow
on the outflow side of the orifice effectively removes
the attached mass in this region. Within the orifice,
one may expect some reduction in the inertance,
though insufficient data are available for one to

determine exactly how much. As a compromise, we
assume that a 50 % reduction occurs, and therefore

Ro being the orifice radius. This latter expression was
used here to find 1. Any inaccuracies in this estimate
of 1 would be totally swamped by the large orifice
resistance, caused by the mean flow and possibly also
by the nonlinear hydrodynamic resistance. In the case
of intense sound transmission through an orifice with
no mean flow, Cummings [7] was able to calculate 1
at each integration step as the solution proceeded,
from an empirical formula relating 1 to the volume of
the vortical fluid in and around the orifice, but no such
procedure is possible where mean flow is present and
neither, we feel, is it necessary.

It was found that the contraction coefficient C,,
was dependent on 03C5’0/V0, and that this dependence
was différent in the positive and negative flow half-
cycles. In section 3, the development of empirical
expressions for Ce is described.

In the case of multiple orifices, little modification
to the foregoing theory is necessary provided the
orifices are sufficiently far apart that interaction
effects between adjacent orifice flows can be neglected.
We simply replace the orifice area Ao by NA0, where
N is the number of orifices and Ao is the area of each
orifice.

3. Empirical détermination of the orifice contraction
coefficient

In the course of this investigation, the values of Ce
were adjusted so as to give the best agreement between
the measured and predicted values of p2. It was found
that (i) different optimum values of Ce were obtained
for positive and negative flow half-cycles (« positive »
and « negative » referring to the sign of v’), and (ii)
the optimum value of Ce was dependent on the peak
value of v’ 0 in each half-cycle.
One could, perhaps, allow Ce to vary continuously

during the orifice flow cycle (this term being used -
rather loosely - here to apply to transient as well
as periodic signals), as a function of some appropriate
parameter, but it was considered to be sufficient to use
constant values during the positive and negative half-
cycles, determined by the peak values of v’ 0 in the
positive and negative directions, denoted ’0+ and ’0-
respectively (’0- being a positive quantity). It was,
moreover, considered that = ’0+/V0 and 03B6- -
’0-/V0 would be the determining parameters of Ce+
and Ce- (the values appropriate to the positive and
negative half-cycles respectively). It seemed reasonable
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to expect Ce to be dependent on the magnitude of the
orifice velocity perturbation as a function of the mean
flow velocity, rather than in absolute terms. For

example, at the onset of reverse flow, (- = 1, and one
might perhaps expect Ce- to behave in an unusual
manner for values of (- close to unity. For small
values of both 03B6+ and 03B6-, values of Cc+ and Cc-
corresponding to steady flow could be expected, since
the mean jet flow would be only slightly perturbed,
by the acoustic wave. A typical steady-flow value of C,,
is 0.61, if Q « 1. Conversely, with zero mean flow,
for sound fields of at least moderate intensity, one
would expect Ce to take on an appropriate value.
Cummings [7] found that Ce = 0.75 gave good results
in this situation, so as both 03B6+ and (- tend to infinity,
then Cc+ and Ce- should tend toward a value of 0.75.

Fig. 3. - Contraction coefficients versus peak velocity
parameter.

A series of expérimental tests was carried out on a
sharp-edged orifice of 6.35 mm diameter using tran-
sient signals, in which 03B6+ and 03B6- were varied both
by varying the peak values of p’1 and by varying Yo.
Optimum values of Cc+ and C,,-, as functions of 03B6+
and 03B6- respectively, were determined. Figure 3 shows
the results of these tests, together with empirical
expressions intended to give a « best fit» to the
measured data as well as the desired behaviour as

03B6+,- ~ 0 and ’+,- -+ oo. A quantity 8 + is defined as

and a quantity 03B5- is defined,

The empirical expressions for e , - are :

It can be seen that there is some degree of scatter in
the experimental data, as on would expect, but there
are definite trends. For positive flow, Cc+ varies more
or less monotonically over the range of 03B6+, with
apparently random variation in the measured data.
This is to be expected, on the basis of physical argu-
ments, since no dramatic change in behaviour would
be expected as 03B6+ is varied. On the other hand, Ce-
might be expected to exhibit different behaviour for
03B6-  1 and C- &#x3E; 1, and this appears to be the case.
A peak value of Ce- of about 0.95 is noted when

03B6- = 1, with a rather gradual falling-off on either side
of the peak.

In the implemention of equations (18a-c) in the
NTD solution scheme, an iterative procedure was
used. To start with, values of Cc+ = 0.7 and Ce- =
0.75 were used. The solution was run once, and values

of 03B6+ and 03B6- were found from the calculated maximum
and minimum values of 03C5’0. New values of Cc+ and Cc-
were found from the empirical formulae and the
solution was run once more. This process was repeated
three times, at which point convergence invariably
occurred.

4. The rôle of the constant term in the forcing function

In equations (12) and (14), a constant term appears,
involving the mean of the orifice velocity perturbation
multiplied by its absolute value. Physically, this

represents an additional time-averaged pressure diffe-
rential across the orifice, brought about by nonlinear
« rectification » of the orifice velocity perturbation.
This pressure is grouped together with the forcing
pressure p’. As previously mentioned, this term may be
incorporated in the solution by using an iterative
procedure. The question arises : is it strictly necessary
to include this term, since it merely represents a D.C.
forcing pressure, and what effect will discarding it
have on the solution ? The answer is not immediately
obvious, as it would have been in the case of linear
goveming equations.

In the case of a transient pressure signal, it is quite
clear that 03C5’0 | 03C5’0 | ~ 0 as the averaging time tends to
infinity, which in the present context signifies that there
is no time for a steady additional pressure differential
across the orifice to be built up, during the time
history of the signal.

In the case of a continuous signal, the situation is less
clear. Some numerical studies were carried out, with
the object of gauging the importance of the constant
forcing term, and assessing whether it could reasonably
be neglected. Figure 4 shows a typical result, for

Do = 6.35 mm, to = 0, V 0 = 28 m/s, pipe diameter =
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Fig. 4. - Sample calculations of p’, with and without the
constant term in p’1; , constant term included ;
- - -, constant term not included.

50.5 mm, po = 1.2 kg/m3, co = 344 m/s ; the time
variation of pi is that shown in figure 12. The dashed
curve in figure 4 is one cycle ofp’ 2 without the constant
term included, and in the solid curve, the constant
term has been incorporated. It can be seen that the two
curves of p’ 2 are closely similar, though the curve with
the constant term included is shifted downward on

average by about 5 % of the positive peak pressure in
p;. The constant term in the forcing pressure is
- 42 Pa, that is, about 2.3 % of the positive peak
value ofpl. Thus, even though the governing differential
equations of the system are nonlinear, it appears that
the constant term in tbe forcing pressure brings about
principally a D.C. shift in the transmitted pressure,
with very little change in the A.C. signal component.
In the other cases studied, similar conclusions were
reached. Indeed, the theoretical results presented in
reference [7], for the transmission of intense sound

through orifices in the absence of mean flow, were
obtained by completely neglecting the constant term
in the forcing pressure. Even so, excellent agreement
was obtained between the predicted and measured
transmission properties of orifices for periodic signals.
A salient point here is that the measuring microphone
could not detect the D.C. component of the signals.

In view of the above comments, it was decided to
discard the constant term in the forcing pressure, in
equations (12) and (14).

5. Measurements.

The arrangement by which experimental tests were
conducted is illustrated in figure 5. An orifice plate
was mounted between flanges in a 50.5 mm internal

Fig. 5. - The measurement apparatus.

diameter pipe. Air from a silenced supply was fed into
the pipe by means of a side branch, and a « pressure »
driver supplied the acoustical signal. The driver was
connected to a power amplifier and a signal generator,
which was made to produce transient signals consisting
of half a cycle of a square wave, or else bursts of a
square wave signal. These square wave signals were not,
of course, accurately reproduced by the driver, but the
actual resultant acoustical signals were of suitably
« broadband » frequency content for the purpose :
the transient signals contained both rapid and more
gradual pressure changes, and the signal bursts (or
rather, their steady signal equivalents) were rich in
harmonics. These features were, we felt, desirable in
order to test the theory and computational scheme
to the full. The advantage of using short-duration
signals was that the effects of axial wave reflections
could be eliminated by sampling the signal before the
first reflection arrived.
The orifice plate itself was utilized as a meter for the

mean flow, and two narrow static pressure tappings
were drilled in the pipe wall upstream and downstream
(at the appropriate positions) of the flanges, a U-tube
manometer being used to register the pressure diffe-
rential. Condenser microphones of 6.4 mm diameter
were used to detect the acoustical signal, and their
outputs were fed to a two-channel microphone
amplifier and then to a two-channel FFT analyser
and digital plotter. The tube termination at the
downstream side of the orifice plate was left open to
accomodate the air flow.

Several orifice plates were tested, including 6.4 mm
and 12.7 mm diameter sharp-edged single orifices, a
square-edged orifice of 6.6 mm diameter and thickness
3.2 mm, and a five-hole orifice plate with orifice
diameter 6.6 mm and thickness 3.2 mm.

6. Comparisons between experiment and theory.
A wide variety of possible combinations of parameters
was investigated : low mean flow with intense sound,
low mean flow with less intense sound, higher mean
flow with intense sound, et cetera (the zero flow case is
not reported here, having been discussed at length by
Cummings [7]) ; and, of course, single hole and multi-
hole orifice plates were examined, as well as the effect of
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differing orifice diameters ; both short-duration tran-
sient signals and bursts of periodic signal were also
utilized. We discuss only representative cases here.

In figure 6, a comparison is made between the

predicted an measured p2 - t histories for a single
6.4 mm diameter sharp-edged orifice with a fairly high
value of Vo (48.4 m/s, corresponding to a Mach number
of 0.14) and a high pressure transient signal. Good
agreement is observed between prediction and mea-
surement. The predicted and measured spectra (in the
form of the modulus of the discrete Fourier transform,
1 P2Cfk) 1) of p’ are also compared, and satisfactory
agreement is noted here, too. Figure 7 shows data on
the same orifice for a transient signal, with the same
value of Vo, but at a lower sound pressure. Again, there
is good agreement between the predicted and measured
transmitted pressure. We may see that nonlinear

Fig. 6. - Transmission characteristics of 6.4 mm diameter
sharp-edged orifice, Vo = 48.9 m/s ; , experimental;
- - -, theoretical.

Fig. 7. - Transmission characteristics of 6.4 mm diameter
sharp-edged orifice, Vo = 48.9 m js ; , expérimental ;
- - 

-, theoretical.

effects here are small : the ratio between the measured

negative peak values of p’ and p2 in each of the two
cases is about 20.5, with the ratio between correspon-
ding positive peak values being about 21.4. In passing
we note the presence of a certain degree of flow noise
superimposed on the transmitted pressure signal.

Figures 8 and 9 show data on pl and p’2(again, both
predicted and measured), for the 6.4 mm sharp-edged
orifice with a lower value of Vo (19.9 m/s correspond-
ing to a Mach number of 0.057), at higher and lower
sound pressures respectively, for a transient signal.
We note that the transmitted pressure is quite accura-
tely predicted in both cases. There are two further
features to be noted in the comparison. First, the ratio
between the peak negative values of p’ and p2 in each
of the two cases is much smaller than the ratios in

figures 6 and 7 ; the same is true of the ratio of peak
positive values. This is because of the lower mean flow
speed in figures 8 and 9 ; a smaller orifice resistance
brings about a greater pressure transmission coeffi-
cient. The second point is that nonlinear effects are
more noticeable here because of the lower mean flow

speed. The ratio between the peak negative values of
pl and p’ in figure 8 is 8.5, but is only 6.3 in figure 9.
The ratio between the peak positive values of pi and p’2
in figure 8 is 15.3, and is 11.2 in figure 9. There is clearly
much more variation here between these pressure
transmission ratios than there is in the case of the data
shown in figures 6 and 7, and this is because the data in
figures 8 and 9 correspond to situations where flow
reversal occurs during the negative flow half-cycle.
For example, the predicted negative peak value of 03C5’0
in figure 9 is - 31.6 m/s, whereas Vo = 19.9 m/s.

In figure 10, the predicted and measured transmitted
pressures are shown for a transient wave of fairly high
pressure impinging on a 12.7 mm diameter sharp-
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Fig. 8. - Transmission characteristics of 6.4 mm diameter
sharp-edged orifice, Vo = 19.9 m/s ; , expérimental ;
- - 

-, theoretical.

Fig. 9. - Transmission characteristics of 6.4 mm diameter
sharp-edged orifice, Vo = 19.9 m/s ; , expérimental ;
- - 

-, theoretical.

Fig. 10. - Transmission characteristics of 12.7 mm dia-
meter sharp-edged orifice, Yo = 48 m/s ; , experi-
mental ; - - -, theoretical.

Fig. 11. - Transmission characteristics of five-hole orifice
plate (thickness = 3.2 mm) with 6.6 mm diameter square-
edged orifices, Vo = 46.2 m/s ; , experimental;
- - 

-, theoretical.

edged orifice, with Vo = 48 m/s. Good agreement
between the predicted and measured time histories of
p2 may be noted. The transmitted pressure is higher
here, compared to the incident pressure - because of
the larger orifice area - than it would have been in the
case of the 6.4 mm orifice under the same conditions.
A comparison may be made with the data shown in
figure 7 ; although the peak incident pressure there is
only about half that of the data in figure 10, the
comparison is still valid because nonlinear effects are
fairly small in both cases. 1

A comparison is made, in figure 11, between the
predicted and measured transmitted pressures for a
fairly high pressure transient wave impinging on an

orifice plate 3.2 mm thick, having five square-edged
holes of 6.6 mm diameter, with Vo = 46.2 m/s. Four of
the holes were at the corners of a square of side 21 mm,
and the fifth hole was at the centre. The square-edged
geometry brought about considerably greater flow
noise than that produced by the sharp-edged orifices,
and this noise is superimposed on the p2 time history.
Good agreement between experiment and theory is
still observed in this case, however, and even though
the holes are fairly closely spaced, inter-orifice inter-
action would seem to be small.

Figure 12 shows the predicted and measured trans-
mitted pressures for a fairly intense periodic signal burst
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Fig. 12. - Transmission characteristics of 6.4 mm dia-
meter sharp-edged orifice, Vo = 48.9 m/s, for a signal
burst ; , , experimental ; - - -, theoretical.

interacting with a 6.4 mm diameter sharp-edged orifice
with Vo = 48.9 m/s. There is a small D.C. discrepancy
between the theoretical and measured time histories
of p2 but otherwise the agreement is good. (This
discrepancy cannot be explained by the constant term
in the forcing pressure, which makes virtually no
difference to the predictions in this particular case,
even in the D.C. component of p’2). A comparison is also
made beween the predicted and measured spectra of
p2, in the form of the amplitudes, C", of the first ten
terms (excluding the constant term) in the Fourier
series for the equivalent continuous signal. Odd terms
dominate the series, and the predicted and measured
values of these terms are in good agreement. Agreement
between the predicted and measured values of the even
terms is less good, but this is not of great significance
in view of the minor role of these terms.

Althought the formulae representing the coefficients
used in the predictions described here were obtained

empirically, they produced universally good agreement
between predictions and measurements in the present
series of tests, over a range of flow speeds, acoustic
pressures and orifice diameters. It is therefore felt that
the comparisons are valid and that the expressions for
the contraction coefficients used should be more
generally applicable.

7. Discussion.

The results presented in this paper have demonstrated
that it is possible to provide an accurate description
of intense acoustic transmission through perforated
plates with normal mean fluid flow, on the basic of a
fairly simple inviscid flow model that embodies the
essential features of the phenomenon. The model also
permits an arbitrary time variation in the field varia-
bles. Both mean flow and large acoustic velocity
perturbations are seen to bring about an increase in the
orifice resistance; this appears to be the principal
effect, and the orifice reactance would seem to play a
relatively minor role in the transmission mechanism.
The point at which nonlinear effects become noticeable
varies with mean flow speed and is best expressed
in terms of orifice velocity perturbation amplitude
(for a sinusoidal signal). For zero flow, nonlinear
effects typically become important when the amplitude
is greater than about 0.5 - 1 m/s (this depending on
geometry and frequency), and in the presence of flow,
when the amplitude is greater than the mean flow
speed in the orifice.

It proved to be necessary to allow the orifice
contraction coefficient to depend on the magnitude
of the acoustic velocity perturbation in the orifice,
as a fraction of the mean flow velocity. Special pro-
vision had to be made for the situation where « flow
reversal » in the orifice occurred but the empirical
expressions for the contraction coefficient seemed to
give fairly satisfactory results. It would, no doubt, be
possible to devise an improved means of calculating
the contraction coefficient, though any great compli-
cation in this process would hardly be justifiable in a
theoretical model of this type.
There are of course other configurations, involving

mean flow and perforated plates, that are of practical
interest. For example, the situation where there is

tangential mean flow on one side of the plate can occur
in I.C. engine silencers and also in the perforated
attenuating liners which are used in jet aircraft engines.
Another case, that can be of importance in I.C. engine
silencers, is that in which there is tangential mean flow
across both sides of the perforated plate, perhaps also
with some degree of flow through the perforations.
These cases would, of course, have to be examined
separately. The work of Rogers and Hersh [13], on the
effect of grazing flow on the steady flow resistance of
perforated plates, could perhaps be of use in these
investigations.
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The model described here should yield a reasonably
accurate quantitative description of the local acoustic
transmission properties of perforated plates under the
specified flow conditions. In a particular application,
perhaps involving cavities or tubes bounded in part by
perforated walls, the model would fumish boundary

conditions, which should be matched up to the sound
field in the enclosure by some appropriate means. To
retain the generality of the method for an arbitrary
time-dependence of the acoustic signal, an overall
NTD solution method would probably be advan-
tageous.
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