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density of states as a function of n, the number of
electrons per atom, in the three cases considered.
We note in passing that the density of states
at the Fermi surface (n == 1 for the pure métal)
increases as the energy gap increases but in view
of what has been said above this is probably without
significance. Figure 4 shows what the density
of states curves become when thé band width
(the highest energy minus thé- lowest energy in
the band) is taken to be the same in each case.
We see that the effect on the density of states of
the distortion of the energy surfaces is almost com-
pletely swamped by the change in the band width.

If any deduction can be made from the present

calculation, therefore, it is that the change in the
band width on alloying is probably more impor-
tant, from the point of view of electronic specific.
heat calculations, than the distortion of the energy
surfaces. This agrees with what can be deduced
from the calculation of Ziman (1961).
Although 1 have only quoted the results for a.

simple cubic lattice, a similar calculation has
almost been completed for a face-centred cubic

. lattice, However, much more consideration will
have to be given to the approximations used, as
well as to the many factors which have been igrio-
red, before the significance of the results can be
assessed.
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INTERATOMIC INTERACTIONS IN METALS (1.2) 

By MORREL H. COHEN,
Institute for the Study of Metals and Department of Physics, University of Chicago, Chicago, Illinois.

and Hughes Research Laboratories, Malibu, California. 

Résumé. 2014 On développe une théorie des propriétés de cohésion des métaux qui, bien qu’inap-
plicable aux métaux de transition, terres rares et actinides, est cependant valable pour les autres 
métaux quelle qu’en soit la composition et la structure. Deux points sont à la base de cette
théorie ; d’une part une nouvelle formulation du problème à N corps, d’autre part la méthode
du pseudo potentiel pour tenir compte des couches profondes des ions. Lorsqu’on développe
l’énergie exacte en puissances du pseudo-potentiel et que l’on garde les termes principaux, on
obtient une formule approchée pour l’énergie de cohésion qui contient explicitement les forces
entre les atomes deux par deux. On montre que ces forces ne sont ni ioniques ni covalentes mais
de caractère spécifiquement metallique.

Abstract. 2014 A theory of the cohesive properties of metals is developed which, though inap-
plicable to transition, rare earth, and actinide metals, holds otherwise for arbitrary composition
and structure. The theory is based on two ingredients, a new dielectric formulation of the many-
body problem and the pseudo-potential method for dealing with the ion cores. When the exact
energy is expanded in powers of the pseudo-potential and the dominant terms retained, there
results an approximate formula for the cohesive energy explicitly containing pairwise central forces
between the atoms. It is proved that these forces are neither ionic nor covalent but specifically
metallic in character.

LE JOURNAL DE PHYSIQUE ET LE RADIUM TOME 23, OCTOBRE 1962,

I. Intrbduetion. - In the early history of the
theory of metals, calculation of the cohesive energy
of a metal was of central concern. Apart from a
very considerable development of the theory of the
electron gas, recent effort, both expérimental and

(1) Read by 0. J. Kleppa. 
(2) Supported in part by the Office of Naval Research

and the National Science Foundation.

theoretical, has been focussed primarily on pro-
perties of one-electron character. In the present
work, wè have returned to the study of the cohe-
sive properties of metals.

Difficulties in the way of such studies are

twofold : 
a) Even for the electron gas (i.e., a uniform back-

ground of positive charge instead of atoms) we

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphysrad:019620023010064301

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphysrad:019620023010064301


644

have a theory accurate only at electron densities
higher than normal [1]. The most advanced work
thus far, that of Hubbard [2] is still of uncertain
accuracy at normal electron d ensities.

b) The intricacies introduced by the presence of
atoms has been regarded as almost insuperable
thus far.
We get around difficulty (a) by observing that it

applies’ orily to volume dependent properties. It
is largely irrelevant for structural changes at cons-
tant volume. The simplification made possible by
the use of the pseudo-potential introduced by
by Phillips and Kleinman [3], and its weakness [4],
largely eliminate difficulty (b).

Accordingly, in this talk, we outline a theory of
the cohesive energy based on the following ingre-
dients :

(1) The dielectric formulation of the many-body
prôblem [5] modified so that it starts out from the
Hartree approximation rather than from free elec-
trons [5].

(2) The replacement of the actual atomic poten-
tial by the pseudo-potential, and the application of
self-consistent perturbation theory to the latter.
Each of these features of the theory will be pre-

sented and discussed but not derived here. We
shall use the structure so developed to show the
existence of and give approximate formulae for
interatomic forces without regard for atomic cons-
titution or arrangement. A proof will then be
indicated that these forces are neither ionic nor
covalent in character.

II. Dielectrie formulation of the many-body pro-
blem. - Nozières and Pines [5] prove that the
total energy E(e2) of a gas of N electrons in
volume 03A9 is given by

where E(o) is the free-electron energy, e(q, û) ; 03BB)
is the dielectric function of the electron gas for

wavenumber q, frequency o, and value À of the
electron charge squared, and where v,, is the Fourier
transform of the Coulomb interaction, 47r e21q2.
Equation (1) furnishes a rapid means of approxi-
mate calculation of the energy once an approxi-
mate dependence of the dielectric function on X, q
and W is established. However, despite the appea-
rance in the integral over 03BB of small values of À,
the charge squared can never be treated as small,
and it is necessary to go to infinite order of pertur-
bation theory to obtain the lowest satisfactory
approximation to the dielectric function [5]. But
then all distinction from perturbation theory is

lost, and the analysis has no advantage over the
beautiful work of Hubbard [2], who established an
equation equivalent to (1) by perturbation theory,

obtained explicit results for the electron gas and
treated electrons in a crystal as well. Hubbard
found it convenient, if not essential, to start his
perturbation analysis of the crystal from the
Hartree problem. We therefore have derived an
exact formula analogous to (1) and holding for non-
uniform systems as well by starting out from the
Hartree approximation rather than the free par-
ticle problem ; indeed we have found it impossible
to generalize (1) to nonuniform systems by starting
out directly from the latter problem.
We consider a collection of N electrons and nu-

clei (charges Zi, 03A3 Zi .--- N) fixed in arbitrary posai-
tions within volume 03A9. Because no restriction is
made as to composition or atomic arrangements we
encompass alloys, crystals, amorphous solids, and
liquids in the present treatment.
The generalization of eq. (1) proceeds by intro-

ducing a parameters 0  03BE  1 into the func-
tional dependence of the energy on the wave-
function. For Z = 0, the energy has the factorized
form of the Hartree theory ; for § = 1, it has the
exact form. At intermediate values of 03BE, it has a
mixed form which requires a fairly deep study of
the time evolution and statistical mechanics of sys-
tems governed by such an energy function. All
that can be done, however, leading to a genera-

. lization of existing self-consistent field theory.
One can then introduce the dielectric function in
the usual way, express the derivative of the energy
with respect to § in terms of the dielectric function
and arrive at the desired result :

In eq. (2) E(1) is the exact ground-state energy,
and E(U) is the ground-state energy in the Hartree-
approximation. The dielectric function e is regar-
ded as a matrix with respect to the wavenumber
q of the linear response of the system to a pertur-
bing external potential of wavenumber q’

and I is the unit matrix.
If one simplifies to the case of the electrons gas,

E is diagonal in q. One can than expand e in

powers of 03BE. Keeping only the § = 0 value of e
m the integrand (i.e., the Hartree or RPA value
of e) gives Hubbard’s result immediately. It is
not difficult to work out the term in z linear in Z ;
including it in the integrand still permits the inte-
gral over § to be carried out. The resulting inte-
grals over q and W are now in the process of nume-
rical computation. It is evident that the para-
meter § can be used as the systematic ordering pa-
rameter lacking in Hubbard’s theory and that the
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results of the numerical calculations now in
progress will give us some idea of the convergence
of the procedure at ordinary metallic densities.

III. The pseudo-potential. - The preceding
result, eq. (2), contains the contribution of all elec-
trons in the metal to the total energy. However,
there are atoms for which a clear separation
between core and valence electrons is possible [7].
The wave functions of the former are largely unaf-
fected by the state of aggregation and can be pre-
sumed known from the solution of the isolated
atom problem. As Phillips and Kleinman have
shown, it is then possible systematically to ignore
the existence of the core electrons, replacing the
requirement of ôrthogonality between valence and
core wave functions by a fictitious additive poten-
tial, the repulsive potential [8]. Thus, the in-
fluence upon the valence electrons of a single nu-
cleus plus its core electrons, an ion core, may be
represented by a one-electron pseudo-potential.
The exact form of the pseudo-potential is compli-

cated, being nonlocal and eigenvalue-dependent in
character. However, the pseudo-potential is not
unique [4], and a selection from among the family
of allowable pseudo-potentials may be made on the
basis of convenience. In the following, we shall
suppose the pseudo-potential to be local and eigen-,value independent, our investigations being mainly
exploratory in character. Although we shall not
specify the pseudo-potential in détail, what we
have in mind is a potential which is properly Cou-
lombic outside the core and flat inside the core
(See fig. 1). The cut-off radius and well depth can

Fm. 1. - A schematic plot of the pseudo-potential V as a
function of radius r. Outside the core, r &#x3E; ro, V is the
potential of a point ion having the charge of the core
(Z/r). Inside the core, r  ro, V is flat ( V = Vo).

then be determined by fitting to the lowest s-level
and p-levels of a single valence electron outside the
core, as determined from atomic spectra. N. Wiser
has determined a few such potentials and finds

that, as one could expect, the higher levels are well
fitted also. A· few values of the. parameters he
obtains are given in the table.
The eff ect of the repulsive potential is largely to

TABLE

cancel the strong attractive potential inside the
core. Further, the attractive Coulomb tail outside
the core is screened in the self-consistent theory of
the type constructed here [9]. The net potential
acting on the valence electrons is therefore weak,
i.e., gives rise to band gaps small compared to the
Fermi energy. One can treat the sum of the
pseudo-potentials associated with each ion core as a
perturbation upon the electron gas, provided one
does self-consistent perturbation theory.

IV. Interatomie interactions. --- No essential
changes in the dielectric formulation of § II is re-
quired by the introduction the pseudo-potential ;
eq. (2) still holds. We now suppose the pseudo-
potential to be a perturbation and make a power
series expansion of each of the two terms in eq. (2)
in the pseudo-potential. That means (i) doing
self-consistent perturbation theory to get the
Hartree energy .E(0) in powers of the pseudo-
potential, and (ii) similarly expanding the dielectric
function E(q, q’, w, 03BE). Some findings of

Phillips [10] and of Phillips and Kleinman [11] in
another context can be used as a basis for arguing
that the contribution to the energy of the terms
arising from the expansion of s are significantly
smaller than those arising from the expansion of
the Hartree energy. We therefore neglect them in
the present investigation, and expand only the
Hartree energy. We arrive finally at the result
that the total energy of the metal is approximately
equal to the exact energy of the electron gas (which
depends on electron density only) plus the first few
terms of the expansion of the Hartree energy.

Apart from one or two subtleties we cannot
dwell on here, the expansion of the Hartree energy
is straightforward. Provided the band gaps in a

crystal of similar composition are small compared
to the Fermi energy, as they are for the simple
metals, one can terminate the expansion after
second order, with the result 
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The first line in (4) contains Eo, the exact energy
of the electron gas, and the only other term depen-
dent solely on electron density (Ey is the free-
electron Fermi energy). Tho second line contains
terms dependent both on electron density and com-
position but not on atomic arrangement. In the
second line, îci is the spatial average of that portion
of the pseudo-potential of ion-core " l ", vi(r - ri),
differing from the point ion potential

Ut is the net interaction energy of each ion-core
with its own screening cloud 

In (5) e(q).is the static dielectric function of the
electron gas for wavenumber q, and zi(q) is the
ratio of the Fourier transform of the pseudo-
potential to that of the point ion potential. We
note parenthetically that

the charge on the ion core. The last line in (4)
contains the desired -interatomic interactions :

It is derived on thé assumption that the ion
cores do not come in contact ; otherwise, a term of
the Born-Mayer type would have to be added to (7).

Eq. (7) corresponds to central forces, generally
repulsive. Noncentral forces can be only of three-
body and higher type, and, arising from higher
orders of perturbation theory, can be expected to
, 

403C0 e2 zr{q) be of order x = () 2 E smaller. For the impor-s(q) q y 
tant q in (7), x is ordinarily small, i.e.,  0.1,
for the simple metals. Thus we expect (7) to give
the interatomic forces in the simple metals to

something like 10 % accuracy. In the small core
limit, i.e., point ions, (7) reduces to the screened
Coulomb interaction [12].
The expression (7) for Uu’ is simple enough to

hope that quantitative answers to such questions as
why the various metallic elements crystallize in the
structures they do may be forthcoming soon. In

any event, calculations are under way.

V. Nature of the interactions. - The types of
interatomic interactions familiar in nonmetallic
substances are Born-Mayer repulsions, van der
Waals attractions, ionic bonds, and covalent bonds.
The first two, requiring completely localized char-
ged distributions are evidently not present in the
metals expect possibly for core-core interactions,
It seems possible at least that the metallic bonds
derived in the last section in the entity Uu, may be

partially ionic and/or covalent in character. We
have proved, however, that they are not.
An atom has ionic character if, as it moves

through the aggregation of atoms under consi-

deration, it transport a net charge. Similarly, a
covalent bond exists between two atoms if, as the
pair moves through the aggregation, it transports a
net charge different from the sum of the net charges
transported by each atom moving independently.
The electron density n(r) in our metal may be

expanded self-consistently,in a power series in the
pseudo-potential, just as the energy was, with the
result

In (8) no(r) is the free electron density N/03A9 ,
ni(r) is the contribution to the charge density of
the lth ion core, n.m{ r) the contribution of the pair
of ion cores lm, etc... Conservation of charge
(i.e., normalization) requires that

Thus, the total number of electrons associated
specifically with any cluster of ion cores must be
zero. That does not prove the absence of covalent
or ionic character, however. It may be possible
that ni(r) or nim(r), e.g., goes to a constant value
ni(oo) or nl.(oo) at large distances from core 1 or
cores l and m and that consequently there is a net
fraction of an electron - Ont(c&#x3E;o) or - 03A9nlm(OO)
localized in the vicinity of a cluster which is trans-
ported with the cluster and yet neutralized by the
àsymptotic part so that (9) is satisfied. The pro-
blem of ascertaining the existence of ionic or cova-
lent character thus reduceâ to studying the asymp-
totic behavior of the electron density associated
with a cluster of ion cores
We have been able to prove rigorously (within

the Hartree approximation) that the only order of
perturbation theory in which a nonvanishing con-
tribution to the asymptotic part, of the électron
density occurs is the first order. In all other
orders, the asymptotic part vanishes exactly.
Further, in first order the’ amount of electron

charge localized about each iori core is exactly
sufficient to neutralize the ion core. We have
proved, therefore, that atoms,-in metals have no
ionic character and that covalent bonds do not
exist in metals. The interatomic interactions of
the last section therefore are neither ionic nor cova-
lent but specifically metallic in nature.
As one increases the strength of the pseudo-

potential, one might expect that the area of the
Fermi surface might’ultimately dêcrease towards
zero so that one passes over to an insulator. The

perturbation theory used here no longer’converges,
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and ionic and covalent character become possible.
What happens as the area of the Fermi surface
decreases is that the range of distance over which

. metallic screening occurs increases. Thus in a
semimetal with a very small Fermi surface, one
might have a net charge, in a covalent bond loca-
lized on anatomic scale which is surrounded by a
neutraliziny.cloud with a radius of order a hundred
atomic separations. Thus in principle, the theorem

holds for se’1limetals, but becàuse of the long
screening radius there is a greater re3e nblance to
an insulator than to a metal as regards ionic or 
covalent character. 

Aeknowledgement. -- I am very grateful to
Dr. Walter A. Harrison for searching criticism of ,

the Hartree calculations and to Prof. J. C, Phillips 
for general discussions. n
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LATTICE SPACING TRENDS IN CLOSE-PACKED HEXAGONAL PHASES BASED ON THE NOBLE METALS

By T. B. MASSALSKI.
Mellon Intitute, Pittsburgh 13, Pennsylvania, U. S. A. 

Résumé. - La variation des paramètres cristallins et du rapport e/a dans les alliages hexa-
gonaux compacts de métaux nobles a été étudiée en détail, avec des méthodes de haute precision, 
sur tous les exemples connus. On trouve une corrélation remarquable entre les résultats experi-
mentaux d’une part, la concentration en électrons et la zone de Brillouin d’autre part. Les phases
hexagonales examinées forment trois groupes, chacun ayant un comportement caractéristique en
ce qui concerne le rapport e/a, le volume atomique et les écarts par rapport à la linéarité. L’appa-
rition d’un contact entre la surface de Fermi et les faces {10.0} et {00.2} de la zone de Brillouin
peut être détectée avec précision, et un modèle simple permet d’estimer les intervalles entre bandes
dans la zone. Les valeurs obtenues sont comprises entre 0,5 et 1 eV, selon le rapport e/a, la concen-
tration en électrons et la nature du solute. 

Abstract. 2014 The changes of lattice spacings and of the axial ratio in h. c. p. intermediate phases 
based on the noble metals constitute an interesting chapter in the theory of alloys. We have recen-
tly completed the survey of the lattice spacings of all known h.c.p. phases which belong to this
group using high precision methods and the results show a very remarkable correlation with the
electron concentration and the Brillouin zone. The investigated h.c.p. phases fall naturally
into three distinct groups each showing a characteristic behaviour in terms of axial ratio, volume
per atom, and systematic deviations from linearity. Onset of overlap of electrons across the

{10.0} and {00.2} sets of Brillouin zone faces can be detected with high accuracy in terms of
electron concentration and the use of a simple electron theory permits one to evaluate approximate
values of the band gaps in the zone. The obtained values range between 0.5-1.0 eV depending
on the axial ratio, the electron concentration and the nature of the alloying elements. These
and other details will be discussed. 

LE JOURNAL DE PHYSIQUE ET LE RADIUM , 
TOME 23, OCTOBRE 1962,

Some thirty years ago Jones [1] interpreted the
changes with composition of lattice spacings of
the E and n phases in the Cu-Zn system in terms of
overlaps of electrons across the Brillouin zone. At

that time the available data consisted of only a
few points in the Cu-Zn system and was non-

existent for other similar syste ns. By now thé
lattice spacings of all phases which possess the close-


