

Fugacité et fonction F = H - TSs de l'azote jusqu'à 900 atmosphères, aux températures 300, 400, 500, 600, 700, 800, degrés centigrades

J. Saurel, A. Lecocq

▶ To cite this version:

J. Saurel, A. Lecocq. Fugacité et fonction F = H - TSs de l'azote jusqu'à 900 atmosphères, aux températures 300, 400, 500, 600, 700, 800, degrés centigrades. Journal de Physique et le Radium, 1959, 20 (2-3), pp.443-444. 10.1051/jphysrad:01959002002-3044300. jpa-00236067

HAL Id: jpa-00236067

https://hal.science/jpa-00236067

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LETTRES A LA RÉDACTION

FUGACITÉ ET FONCTION F = H - TSDE l'AZOTE JUSQU'A 900 ATMOSPHÈRES,
AUX TEMPÉRATURES 300, 400, 500, 600, 700, 800,
DEGRÉS CENTIGRADES

Par J. Saurel et A. Lecocq, Laboratoire des Hautes Pressions, Bellevue (Seine-et-Oise).

Les résultats d'une étude expérimentale de la compressibilité de l'azote ont été récemment publiés [1]. Ils sont représentés par les deux développements (I) et (II) établis, indépendamment, par la méthode des résidus successifs qui ne limite pas *a priori* le nombre des coefficients :

$$PV = RT + BP + C_{\mathbf{P}} P^2 + D_{\mathbf{P}} P^3 + \dots$$
 (I)

$$\frac{PV}{RT} = 1 + B\frac{1}{V} + C_V \frac{1}{V^2} + D_V \frac{1}{V^3} + \dots$$
 (II)

Il a été établi [1] que, dans le domaine s'étendant de 300 °C à 800 °C et jusqu'à 900 atm., ces deux développements peuvent être limités au terme en D. Il a été également établi, empiriquement, que les coef-

TABLEAU 1

Fugacité de l'azote (atm.)									
°С Атм.	300	400	500	600	700	800			
10	10,04	10,04	10,04	10,04	10,04	10,03			
40	40,71	40,70	40,66	40,63	40,59	40,55			
70	72,21	72,18	72,07	71,95	71,82	71,70			
100	104,6	104,5	104,3	104,0	103,7	103,5			
200	219,4	218,7	217,6	216,4	215,3	214,2			
300	345,9	343,6	340,7	337,8	335,1	332,6			
400	485,8	480,5	474,6	468,9	463,7	459,0			
500	640,8	630,6	620,0	610,2	601,5	593,8			
600	812,5	794,9	778,0	762,6	. 749,3	737,5			
700	1 003	974,8	949,3	926,8	907,4	890,6			
800	1 213	1 172	1 135	1 103	1 077	1 054			
900	1 445	1 386	1 336	1 293	1 257	1 227			

ficients $C_{\mathbf{V}}$ et $D_{\mathbf{V}}$ peuvent être exprimés en fonction de la température T et du deuxième coefficient B, dont les valeurs correspondent aux valeurs des tables du N. B. S. [2] établies en admettant un potentiel d'interaction du type 6-12 (Lennard-Jones).

Ceci nous a permis de calculer les variations isothermes, avec la pression, des diverses fonctions thermodynamiques (énergie interne U, enthalpie H entropie S, ainsi que A = U - TS et F = H - TS) exprimées en cal. mole⁻¹ [3 et 4]. La méthode de calcul de ces fonctions, exposée en [3] utilise à la fois la tabulation de B^* et de $dB^*/d\tau$ de Bird et Spotz [5] et les relations empiriques entre $C_{\mathbf{V}}$, $D_{\mathbf{V}}$ et B [1]. On peut craindre qu'elle n'introduise des erreurs difficiles à déceler. Le calcul de la fugacité f de l'azote nous permet un contrôle des résultats fournis par cette méthode.

Nous avons en effet tabulé cette fugacité en utilisant la relation classique

$$\operatorname{Ln} f = \int \frac{V}{RT} \, \mathrm{d}p + \operatorname{Constante}. \tag{III}$$

L'intégrale est calculée à partir du développement en pression (I). Les valeurs obtenues pour f sont données dans le tableau 1 (f est pris égal à p pour le gaz parfait). Ceci nous permet de calculer la fonction F par la relation F = RT Ln $f + C^{\text{to}}$ (IV). La comparaison des valeurs ainsi obtenues pour F (à partir des relations I, III et IV), aux valeurs obtenues [4] par la méthode exposée en [3], et en passant par les calculs intermédiaires de PV, U, S, effectués à partir de (II), est très satisfaisante ainsi que le montre le tableau 2. La méthode de calcul exposée en [3] n'introduit donc pas, dans le cas présent, d'erreurs notables.

JOURNAL DE PHYSIQUE

TABLEAU 2

Fonction F = H - TS (Cal. mole⁻¹)

a) Calcul à partir de $F = RTLnf + C^{te}$, b) Résultats donnés en réf. 4.

°С Атм.	300	400	500	600	700	800
10 a)	$\begin{array}{c} -2 & 628 \\ 2 & 627 \end{array}$	3 086	3 544	4 002	4 460	4 918
b)		3 085	3 543	4 000	4 458	4 916
40 a) b)	4 222 4 221	4 958 4 957	$5693 \\ 5693$	$\begin{array}{c} 6\ 428 \\ 6\ 428 \end{array}$	7 162 7 160	7 896 7 894
70 a) b)	4 874 4 874	$5724 \\ 5723$	$\begin{array}{c} 6 \ 572 \\ 6 \ 572 \end{array}$	7 419 7 417	$\frac{8}{8} \frac{266}{264}$	9 111 9 109
100 a)	5 296	6 219	7 140	8 059	8 977	9 894
b)	5 296	6 21 9	7 13 9	8 057	8 975	9 892
200 a)	6 140	7 207	8 269	$9\ 330$ $9\ 328$	10 388	11 445
b)	6 140	7 206	8 269		10 384	11 444
300 a)	6 659	7 812	8 959	10 103	11 244	12 383
b)	6 659	7 811	8 958	10 101	11 242	12 382
400 a)	7 045	$\begin{array}{c} 8 \ 260 \\ 8 \ 260 \end{array}$	9 468	10 672	11 872	13 070
b)	7 046		9 467	10 670	11 870	13 069
500 a) b)	7 361 7 361	$8624 \\ 8623$	9 879 9 878	11 129 11 127	$12\ 376$ $12\ 374$	13 620 13 618
600 a)	7 631	8 933	$10\ 227$ $10\ 227$	11 516	12 800	14 080
b)	7 631	8 933		11 514	12 798	14 080
700 a)	7 871	9 206	10 533	11 854	13 171	14 484
b)	7 871	9 20 6	10 532	11 849	13 169	14 482
800 a) b)		$9 \ 452$ $9 \ 452$	10 808 10 807	12 156 12 157	13 501 13 499	14 842 14 840
900 a)		9 678	11 058	12 432	13 801	15 167
b)		9 677	11 057	12 431	13 799	15 165

Lettre reçue le 18 novembre 1958.

RÉFÉRENCES

- SAUREL (J.), Thèse, Paris, 1958; J. Rech. C. N. R. S., no 42, 9, 21.
 National Bureau of Standards, Circular no 564.
 SAUREL (J.) et Lecoco (A.), C. R. Acad. Sc., 1958, 246, 2586.

- [4] SAUREL (J.) et LECOCQ (A.), C. R. Acad. Sc., 1958, 246,
- 3025.
 [5] BIRD (R. O.) et Spotz (E. L.), University of Visconsin, C. M. 599, 1950.