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SOME RECENT PROGRESS IN THE THEORY OF MAGNETISM
FOR NON-MIGRATORY MODELS

By J. H. VAN VLECK,
Harvard University, Cambridge (Mass.), U. S. A.

Résumé. 2014 Dans le présent article il n’est question uniquement que de modèles où les électrons
magnétiques n’émigrent pas d’un atome à un autre. La première partie passe en revue les progrès
accomplis depuis 1950 par les différents chercheurs qui ont calculé le « point de Curie » avec le
modèle d’Heisenberg, et ont déterminé le comportement de la susceptibilité au-dessus de ce point.
Au cours de ces derni6res années, les calculs ont été grandement améliorés en ajoutant des termes
supplémentaires aux développements limités dans le cas de la méthode de développement en série,
et en étendant cette méthode et celle de « Bethe-Peierls-Weiss » à de plus grandes valeurs de spin.
De plus, la théorie de « B-P-W » a été appliquée au ferrimagnétisme et spécialement à l’antiferri-
magnétisme où elle donne à la fois le point de Néel et la valeur maximum correspondante de la
susceptibilité. La dite approximation à couplage constant de Kasteleijn et Van Kranendonk est
une méthode relativement simple ; appliquée aux réseaux à trois dimensions elle donne des résul-
tats remarquablement satisfaisants. La deuxième partie passe en revue de récents développements
des calculs entrepris en vue de déterminer l’aimantation à très basse température par la méthode
des ondes de spin. La troisième partie intéresse l’anisotropie ferromagnétique. Ici il est nécessaire
de généraliser le modèle d’Heisenberg aux interactions spin-orbite, car autrement il n’en résulterait
aucune anisotropie. Une démonstration générale est donnée du fait qu’avec le couplage quadri-
polaire, la constante K1 d’anisotropie cubique doit varier comme la dixième puissance de l’aiman-
tation aux basses températures. Un modèle monoatomique d’anisotropie peut être utilisé pour les
ferrites, mais dans le cas de substances ferromagnétiques dont les spins de chaque atome ont pour
valeur 3/2 ou moins, il est nécessaire d’inclure le couplage entre atomes pour obtenir une aniso-
tropie appréciable. La variation thermique de l’anisotropie magnétique du nickel reste un
mystère. Par contre, la théorie du champ cristallin permet d’expliquer l’anisotropie particulièrement
grande des ferrites à faible teneur de cobalt.

Abstract. 2014 The present paper is concerned entirely with models in which the magnetic electrons
do not migrate from atom to atom. Part I reviews the progress made since 1950 by various workers
in calculating the Curie point for the Heisenberg model and the behavior of the susceptibility
above it. The calculations have been greatly improved in recent years by including more terms
in the series method, and in extending both this method and that of Bethe-Peierls-Weiss to higher
values of the spins. Furthermore, the B-P-W theory has been applied to ferrimagnetism, and
especially to antiferrimagnetism where it gives both the Néel point and the corresponding maximum
value of the susceptibility. The so-called constant coupling approximation of Kasteleijn and
Van Kranendonk is a relatively simple method which gives surprisingly good results for three-
dimensional lattices. Part II reviews recent developments in the calculation of the magnetization
at very low temperatures by the method of spin waves. Part III is concerned with ferromagnetic
anisotropy. Here it is necessary to generalize the Heisenberg model by including spin-orbit inter-
action, since otherwise no anisotropy results. A general proof is given that with quadrupole type
coupling, the cubic anisotropy constant K1 should vary as the tenth power of the magnetization a
low temperatures. In ferrites a " one-atom " model of the anisotropy can be used, but in ferro-
magnetic materials where the spins of the individual atoms are 3/2 or less it, is necessary to include
coupling between atoms to obtain appreciable anisotropy. The temperature variation of the
magnetic anisotropy of nickel is still a mystery. On the other hand, crystalline field theory
furnishes an explanation of the unusually large anisotropy of dilute cobalt ferrites.

LE JOURNAL DE PHYSIQUE ET LE RADIUM TOME 20, FÉVRIER, 1959,

The present report does not pretend to be a
comprehensive survey of the theory of magnetism.
In the first place, it only is concerned with new
developments since the conference on magnetism
held in Grenoble in 1950. Secondly, it will be
confined to theories or calculations based on models
in which the electrons are non-migratory. In a
broad sense all such models are of the Heitler-
London or Heisenberg type, but in many cases
include complications caused by directional valence
and spin-orbit interaction not included in the
conventional Heisenberg theory.

We will assume that the reader is familar with
the main models of this type as of 1950, the
original calculation of Heisenberg, the Bethe-
Peirls-Weiss method of calculation in the vicinity
of the Curie point, the Bloch spin wave theory at
low temperatures, anisotropic exchange as a cause
of anisotropy, and of course Néel’s pioneer work on
antiferromagnetism and ferrimagnetism.

It is desirable to confine our attention to non-
migratory models for several reasons. With this
restriction, there is less danger of the report being
too diffuse and general, and we escape, in parti-
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cular, discussing the role, if any, of the 4s électrons
as middlemen, or entering into the perennial con-
troversy as to whether the non-migratory or

whether the band model with itinerant electrons
is the better. It seems to be consensus of opinion
today that the Heisenberg model is a good approx-
imation for many conducting ferromagnetics.
The last decade, moreover, has witnessed a tre-
mendous growth in the importance attached to
ferrites and to antiferromagnetics, and these are
usually materials which are non-conducting, and
for which it is a good approximation to regard the
electrons responsible for magnetism as bound each
to particular atoms.
The topics which we will discuss are (I) calcu-

lations at relatively high temperatures, near or
above the Curie point ; (II) spin wave theory and
paiticulary ; (III) models of ferro- or ferrimagnetic
anisotropy.

I. Calculations in the vicinity of the Curie point.
-- SERIES DEVELOPMENT FOR FERROMAGNETICS. -
The susceptibility above thé Curie point may be
developed in a series

where t = kT /J, with J the exchange integral.
In 1950, only the coefficients through a4 had been
calculated, even for the simple lattices (simple, f-c,
b-c cubic, hexagonal and quadratic layer lattices)
and these only for spins of 1 /2. The extension to
arbitrary spin was made in 1955 by Brown and
Luttinger [1]. The values of a5 were computed by
Brown [1] in 1956 for body-centered and simple
cubic lattices, and also for the quadratic layer
lattice. The calculations of Brown and Luttinger,
and of Brown, are closely paralleled by those of
Rushbrook and Wood’ [2], made independently
and practically simultaneously. The agreement
between the two computations is gratifying.

Rushbrook and Wood, howaver, report a " very
small " error in Brown’s value of a5 f or S &#x3E; 1/2.
The value of a6 for S = 1 /2 has been recently
calculated by Domb and Sykes [2].
From the series (1), the Curie temperature may

be determined in either one of two ways. One,
the customary procedure, is find Tc from the value
off which makes (1 IX,,) = 0, where Xn denotes the
nth approximation in (1). This is the proce-
dure used in connection with table I. Another
criterion is to determine the Curie temperature
from the value of t for which the series (1) converge,
i.e., an t/an-1 = 1. Brown and also Rushbrook
and Wood show that for space gratings it makes
very little difference which criterion is used. For
the surfaces gratings, however, the spread between
the results which the two criteria is quite appre-
ciable.

BETHE-PEIRLS-WEISS METHOD. - The so-called
B-P-W method, wherein interactions within a

cluster are included rigorously, and those with
other atoms by a molecular field determined by a
consistency condition, has been extended to spins
greater than 1 /2, by Brown and Luttinger in their
important paper already mentioned [1]. The
equations become quite complicated, and the aid of
modern computing machines has to be invoked to
effect the calculations.
The improvements that have taken place since

1950 in the series and B-P-W methods are not to be
regarded as simply minor extensions in numerical
accuracy. They have clarified a major question
of principle. For awhile it looked like the conver-
gence of the series method was chaotic. The
situation was improved in 1950 when Zehler detected
some numerical errors in the early calculations of
Opechowski. It has now become clear that the
convergence of the series method is quite satis-
factor,; and agrees rather gratifyingly with the
results of the B-P-W method, as shown in table 1.

TABLE I

CALCULATED VALUES 0F kTc/J
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For brevity, we give only results for S =1 j2
and S = 5 /2 ; for other values of S, the original
papers should be consulted. The value of n in
each case is that at which the series (1) is termi-
nated. The insertion of a question mark as an
entry means that the calculation for this particular
case has not yet been properly made. We can
safely say that the Curie point for the three-dimeu-
sional Heisenberg model can now be predicted with
reasonable precision for arbitrary values of S. The
uncertainty is minor compared to the various
deviations from the idealized models caused by the
actual physical situation (spin-orbit perturbations,
allotropic modifications, electron migration, etc.).
We should, howaver, note that for surface gratings
the series and B-P-W methods do not agree, as the
former predicts that the quadratic and hexagonal
layer gratings should have a Curie point and hence
be ferromagnetic, while the latter agrees with the
spin wave theory in predicting that these gratings
should be incapable of ferromagnetism. Fortu-
nately, the three rather than two dimensional cases
are those of actual physical interest.
IWe may remark, incidentally, that the new cal-

cuations have brought to light a numerical error in
the original computations of Weiss for the parti-
cular case of the body centered lattice with S =1.
The writer has always been suspicious of Weiss’
result in this particular instance, as the Curie
point which Weiss found (viz., Tell = 6 . 66) was
not intermediate between the values (viz., 10.7
and 8.3) furnished respectively by the first and
second (gaussian) approximations n =1,2 of the
series method. In general, one expects the correct
value to be bounded by these two limits, inasmuch
as the fluctuations in energy for states of given
total crystalline spin which tend to suppress ferro-
magnetic alignment are respectively neglected and
grossly overestimated in these two approximations.
With the new value 8.7 obtained by Brown and
Luttinger, this difflculty disappears.

THE CONSTANT COUPLING APPROXIMATION. --

Most of our proceding discussion has centered
around the work of Brown and Luttinger or Rush-
brook and Wood which involved more refined and
hence more laborious computation than previously.
In the opposite direction, a simpler method of
determining Curie points with fairly good precision
for spatial lattices has been recently developed by
Kasteleijn and Van Kranendonk [3] and in some-
what different form independently by Oguchi [4].
Their idea is essentially to treat a system of only
two atoms, rather than a larger cluster as in B-P-W.
The two atoms are joined by an exchange poten-
tial - 2JSi.Sj, and they call their model the
,, constant coupling approximation " because the
coefficient of Sj Sj is not a variational parameter.
Coupling with other atoms is replaced by a mole-

cular field. The partition function with this model
is readily written down. There are two para-
meters to be determined, viz., the constant of pro-
portionality in the molecular field and the magnet-
ization M of the crystal. These two parameters
are determined by a consistency requirement, that
the mean magnetization of the pair differ from
that of the whole crystal of N atoms by
factor 2 IN, and by the f act that M/gp is the value
of the magnetic quantum number MZ of the whole
crystal which maximizes the free energy F. It is
well known that in large ensembles the partition
function has a large maximum, so that instead of
summing over all values of Mi it suffices to use the 

°

single value of Mz determined by the condition
zfjzmz = 0. The number of complexions, or

statistical weight is very sensitive to Mz, and so
affects the entropy term in the free energy U-TS.
The analytical difficulties are appreciably less with
the constant coupling than with the B-P-W method
while the numerical values of the Curie point are
almost as good as with the latter, as reference to
the last column of Table I shows. We should,
however, stress that though the constant coupling
approximation gives good results for the simple
and body-centered cubic lattices, it does not repre-
sent a really refined model, since the results depend
only on the number of nearest neighbors. It hence
does not take account of the cyclic groupings which
make différent gratings with the same number of
neighbors behave differently. Thus the constant
coupling approximation predicts ferromagnetic pro-
perties for the hexagonal surface grating, though
spin wave and B-P-W calculations make it pretty
clear that this should not be the case. The failings
of the constant coupling approximation are apt to
be particularly pronounced when nearest neighbors
of a given atom are also neighbors of each other,
for then there are short-range cyclic coordinations
which are not taken into account. This fact presu-
mably explains why the constant coupling model
gives poorer results for the fe ce -centered than for
the simple or body-centered cubic gratings (cf.
Table I ).

ANTIFERROMAGNETISM. - The series method

apparently cannot feasibly be used to determine
the Néel point in antiferromagnetic materials,
This question has been examined in some detail by
Brown and Luttinger [1]. The Néel point is cha-
racterized by a maximum rather an infinity in the
susceptibility, and so is harder to locate. Further-
more since the series alternate in sign, there is no
simple way of determining when they do not
converge.

It is, however, possible to compute the Néel point
with the B-P-W method. The first paper applying
this method to antiferromagnetic media was one
by Li [5], in 1951. He treated only spins of I J2,
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and the extension to spins ;3 was made by Brown
and Luttinger. In a forthcoming paper
J. S. Smart calculates the susceptibility at the
Néel point, and finds good agreement with experi-
ment. The constant coupling approximation can
also be àpplied to antiferromagnetism, as has been
done‘ by Kasteleijn and Van Kranendonk in their
second paper [6].

Before leaving the discussion of antiferro-
magnetics we may mention an interesting papier
by Miss O’Brien [7] on this subject at very low
temperatures, - namely chrome methyl alum
which has a Néel point around .02 0 K. She shows
that the usual credos that dipolar coupling cannot
produce a transition temperature in a cubic com-
pound, and that the Ising model does not corres-
pond to a physically real situation, are not true in
this material. The dipolar terms do not average
out because of a peculiar staggering of crystalline
field axis, and the Ising model is applicable because
the crystalline field suppresses two components of
the atoms magnetic moment, so that the latter is
essentially a scalar rather than vector quantity.
The Néel point computed on the basic of pure
dipolar, and not exchange coupling agrees with
experiment practically within the rather large
experimental error (25 % or so).

FERRIMAGNETISM. - In 1956 the B-P-W method
was extended to ferrimagnetic media by
J. S. Smart [8], though only for somewhat special
cases. He assumed, to simplify the analysis, that
each lattice has a spin 1 /2, that each spin in lat-
tice A is coupled only to nb nearest-neighbors of
atoms B, and each spins off to na of A. The
Curie or Néel temperatures which he computes are
materially lower than those calculated by Néel
with the conventional molecular field method. Such
differences are not surprising, for the latter method
has an accuracy comparable with only the first

approximation n =1 of the series method. The
B-P-W and molecular field methods do not always
agree as to whether ferrimagnetism should even
occur. For the cases that he investigated, Smart
concludes that ferrimagnetism c’an occur only
if na. nb &#x3E; 5 (na + nb) /2, whereas there is no condi-
tion of this character in the molecular field method.
As a check on the accuracy of Smart’s work, it may
be noted that, according to the sign of J, his for-
mulas reduce to those of Weiis or Li in the special
case na = rcb.
Smart deduces curves for 11x vs. T above the

Néel temperature which are pronouncedly dif-
ferent than those furnished by the molecular field
theory. More complete comparison with experi-
ment is highly desirable, although the restriction
to S =1/2 makes the theory perhaps too special
to make this possible.

In concluding this section, we may remark that

the theory for non-conducting ferroinagnetie, anti-
ferromagnetic, and possibly ferrimagneticmaterials
has now reached a sufficient degree of refinement
that theory and experiment should be compared
more carefully than has previously been done
anent the curves 1/X vs. T above the Curie point.
Some theoretical insight should thereby be
obtained regarding the causes of the observed
deviations from linearity, and the distinction
between the ferromagnetic and paramagnetic Curie
points.

II. Spin waves. - Numerous articles have
appeared in the past f ew years on the bearing of spin
wave theory on line width and relaxation pheno-
mena in ferromagnetic résonance, interaction with
conduction electrons, etc. Also, Herring and
Kittel have made important contributions in show--
ing that the applicability of spin wave theory is
considerably more general than that of the Hei-
senberg model. These questions, however, we con-
sider beyond the scope of the present report, and
confine our attention to spin wave theory insofar
as it affects the calculation of specific heat and
susceptibility for the Heisenberg model. So we
will discuss the developments in spin wavç theory
only in rather cursory fashion.
The advances in spin wave theory insofar as we

are concerned fall mainly into two categories -
refinements in the theory for the ordinary ferro-
magnetic case, and generalization or extension to
include antiferromagnetism and ferrimagnetism.

HIGHER APPROXIMATIONS IN THE FERROMA-

GNETIC CASE. - It is well known that the conven-
tional spin wave theory is not rigorous because
only the problem of one reversed spin is solved
exactly, and it is assumed that the eigenvalues
for n reversed spins can be compounded additively
from those associated with single reversals. Nume-
rous attempts have been made to correct for this
oversimplication. 
The latest and presumably most reliable is that

of Dyson [9]. He finds that when the corrections
for the interaction between two reversed spins are
included, the development of the expression for
the saturation magnetization in the vicinity of
T = 0 takes the form

instead of the conventional

Dysons’s result is in disagreement with the earlier
results of other workers, who did not agree among
themselves, as Néel pointed out in 1954 [10]. It
had previously been claimed [11] that the leading
correction term to (3) was proportional to T2
or T7/4. It is fortunate that Dyson finds instead
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there is a small term in T5/2. For practical pur-
poses, the effect of the correction is negligible, as
Dyson shows that inclusion of the b term affects the
value of lVl - Mo by less than 5 percent even at
half the Curie temperature.

THEORY FOR ANTIFERRO- AND FERRIMAGNETIC
MEDIA. - A considerable number of papers have
been published by Kaplan, Anderson, Kubo and
others [12] since 1950 extending spin wave theory
to antiferromagnetic ’and ferrimagnetic materials.
Most of these articles have been concerned prima-
rily with magnetic resonance. We will confine
our attention to some recent work of Kouvel and
Brooks [13] in which the behavior of the magnetic
moment and spécifie heat at low temperatures is
investigated, both theoretically and experimen-
tally.
We will here quote the rather expressive for-

mulas which Kouvel and Brooks derive for the
saturation magnetization and specific heat of a
ferrimagnetic material at low temperatures :

Here J is the exchange integral assumed to be
negative, and 8,, S2 are the spins of the two sublat-
tices. We have assumed that’the magnetic atoms
form a simple cubic lattice (NaCI type) ; the nume-
rical factors for other cubic lattices have différent
values than 0.117 and 0.113.
The antiferromagnetic case requires special

treatment, as the expression (5) vanishes. Kouvel
and Brooks show that for a simple cubic antifer-
romagnetic lattice, the formula for the specific heat
becomes

The specific heats for antiferromagnetics and
ferrimagnetics are thus markedly différent, being
proportional to T3 and T3/2 respectively. A true
antiferromagnetic has no saturation moment, so it
is meaningless to talk about how (4) is modified in
the antiferromagnetic case. However, for a

material having Si = S2 but 91 # g2, ferri- as
regards magnetic moment, but antiferro as regards
angular momentum, it can be shown that the satu-
ration magnetization should behave in the fashion

It hould be interesting if behavior of this type
could be found experimentally.
The proportionality of the specific heat to T3/2

for ordinary ferrimagnetics is verified in the measu-
rements of Kouvel [14] on the specific heat of

magnetite. This is a striking confirmation of spin
wave theory except that the computed and obser-

ved proportionality factors multiplying T3/2 do not
agree. Kouvel notes that in antiferromagnetics,
the magnetic T3 term in C, may be considerably
larger than the ordinary Debye vibrational term
of this type and so may be détectable.

III. Ferro- and ferrimagnetic ardsotropy. - We
will discuss the subject of anisotropy in some detail,
as it plays a central role theoretically in the under-
standing of spin-orbit perturbations of crystalline
energy levels and it is a matter of great importance
in connection with technological applications, nota-
bly in the ferrites. We will confine our attention
to cubic crystals, as this is the commonest case,
and perhaps the most interesting.

OCTOPOLAR POTENTIALS. - The logical starting
point for the discussion of cubic anisotropy in a
material whose magnetism arises primarily from
spin is an effective potential or spin Hamiltonian
of the type

where a is a constant and

The constant C is included to make V average
to zero when all Zeeman components are weighted
equally. Although the C term has no bearing on
the amount of anisotropy, its inclusion somewhat
facilitates the discussion, as then the matrix ele-
ments of (8) have the structure of those of a sphe-
rical harmonie of cubic symmetry and degree
n = 4. So we may term (8) an octopolar poten-
tial. It is the potential of lowest degree that gives
any deviations of cubic from central symmetry,
i.e., from complete isotropy.

Suppose now that the material is magnetized
along a direction specified by direction cosines oc,,
(X2, oc3 relative to the principal cubic axes. The
eifect of the exchange forces producing the ferro-
magnetism we may represent, semi-theoretically,
semi-empirically, by introducing a very powerful
molecular field which space quantizes S along the
direction ocl, x a3, which we can take as the z’ axis.
Then the eigenvalues of Sz are Mg =- S, ..., + S.
We therefore transform (8) from x, y, z to the x’, y’,
z’ system. Since (8) is small compared to the
exchange potential responsible for the molecular
field, we may safely drop all terms non-diagonal
in M,, i.e., retain only the part of the transformed
potential which is symmetric about the z’ axis.

(There must be complete symmetry about this
axis since it is the only direction of outstanding
polarization in the unperturbed systems.) The expec-
tation value of this part of (8) is readily shown to
have the form
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where  Yo &#x3E; is independent of the direction
cosines, and Ki, the anisotropy coefficient, is

The idea of using an octopolar potential (8) to
explain ferromagnetic anisotropy was first due to
Bloch and Gentile [15]. However, the model
strikes something of à snag when one tries to apply
it to ferromagnetic metals. Namely there is no
splitting, and hence no anisotropy from an octo-
polar potential unless S  2. One can demons-
trate this result abstractly by group theory, or

more elementarily, simply by noting that the
expression (11) vanishes for any possible choice
of Ms, S  312. Actually the common ferro-
magnetic metals have a mean value of S per atom
considerably less than two. So, unless one assumes
some sort of fluctuation effect in the spins per
atom, the one-atom octopolar model is incapable of
explaining ferromagnetic anisotropy in such cases.

QUADRUPOLE-QUADRUPOLE COUPLING. -. To

escape this difficulty, the writer in 1937 developed
a quantum-mechanical treatment [16] of quadru-
pole-quadrupole ’ coupling between atoms, - a
model which has already been considered classi-
cally in one phenomenological form or another by
various authors, notably Akulov [17]. In the
quadrupole-quadrupole model, the anisotropy is
considered to arise from the coupling between atoms
rather than from the anisotropy in the crystalline
field acting on a single atom. The simplest poten-
tial of the quadrupole-quadrupole type is

where ri; is the radius vector connecting atoms i
and j. A coupling of the type (12) arises from the
interaction of spin-orbit coupling and exchange
energy, when the perturbation developement is

pushed far enough to include terms of the fourth
order in the spin-orbit coupling, and the
exchange energy between the two atoms is included
in the unperturbed energy and is dependent on
how the orbital angular momentum in excited
states is aligned relative to the line joining the two
atoms. Coupling of this type is one form of what
is called " anisotropic exchange ", although the
term is most commonly used for the particular case
of a lower order effect of pseudodipolar structure
which we will discuss later. Even the effect of the

octopolar splitting is called anisotropic exchange
by the Japanese writers ; the usage is a purely
semantic question. The octopolar member makes
the energy in the molecular field, which is essen-
tially exchange energy, a function of direction.
PracticaHy every model of anisotropy is caused by

anisotropic exchange in the general sense of the
word. The spin-orbit coupling makes the exchange
energy anisotropic because it makes the spin
conscious of the dependence of inter-atomic energy
(including that portrayed by molecular fields) on
how the orbital wave functions are oriented. An
elaborate attempt to trace the origin of anisotropy
in interatomic forces has been made by Carr [18] ;
even crystalline potentials ultimately are of inter-
atomic origin.
At first sight the octopolar and quadrupolar

mechanisms seem quite different, but actually this
is not the case. The quadrupole-quadrupole inter-
action can be regarded, as far as anisotropy is
concerned, as simply octopolar coupling in which
the unit of structure whose spin is involved in (8) is
a " molecule " of two atoms (i.e., any pair of two
nearest-neighbors rather than a single atom).
One sees immediately why there can be cubic aniso-
tropy from q-q coupling between atoms of spin
unity of greater, since then the resultant spin can
be two and so give’ splitting in the octopolar
effect (8). If the spins are only 1/2, however,
the q-q mechanism is inoperative for anisotropy,
as the collective spin of the pair cannot exceed
unity. It seems fairly evident that if

the expression (12) becomes a biquadratic form in
the components of S which will be similar to (8)
after averaging over all pairs if the vectors ri; are
distributed equally in certain preferred directions
differing from each other only by a cubic " cove-
ring " operation.
The argument can be described more exactly as follows.

Any wave function for a pair of atoms can be expressed in
the form

where s and Ms denote eigenstates of the pair’s collective
spin s and its component in the direction of the molecular
field. The expectation value of the q-q coupling (12) then
acquires the form ’

where

The elements of (14) non-diagonalin Ms have been drop-
ped, as can safely be done for the same reasons of sym-
metry as explained in connection with the passage from
Eq. (8) to (10). The state of the system need not neces-
sarily be capable of description by a wave function, i.e.,
can be a " mixture " in the von Neumann sense, in which
case p is to be interpreted as a density matrix. (The real
reason for our ability to neglect the elements of Vqq non-
diagonal in lVls is that the corresponding off-diagonal ele-
ments of p vanish because there is no statistical correlation
between different values of Ms if the direction of out-
standing magnetization is the same as the direction of

quantization). The elements (SM, 1 Vq« 1 SM,) in (14) are of
precisely the same structure as those averaged in (11),
except for a proportionality factor dependent on S. This
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fact can be demonstrated by group theory, or otherwise.
The non-diagonal elements in S are of subordinate impor-
tance, and are absent entirely if the two constituent atoms
have spins of 1, as then only the maximum value of S viz.,
S = 2, can contribute to the ansitropy. Since the distri-
bution among the various values of S is a function of tempe-
rature, the variation of susceptibility with temperature can
be diff erent for the q-q model than for the pure octopole
potential which involves only one S.

TEMPERATURE DEPENDENCE OF ANISOTROPY

RESULTING FROM AN OCTOPOLAR POTENTIAL. THE
TENTH POWER LAW. - One of the greatest successes
of theory is that one can show that an octopolar
potential (8) leads to a relation between thé aniso-
tropy constant K1 and the saturation intensity of
magnetization M of the form

where the zero subscript denotes values at T = 0.
The result (15) is, of course, really a connection
between Ki and M, but we discuss (15) under the
heading of temperature dependence because it
enables one to compute the variation of K, with T
if that of M is known, either experimentally or
theoretically.
The relation (15) can be derived very generally.

Existing proofs [19, 20] give rather too much the
impression that they hinge on somewhat special
assumptions, e.g., classical limits, spin wave

models, etc., depending on the kind of analysis.
It therefore seems worth while to give here a proof
which is general and simple. At T = 0 the only
inhabited state is, of course, that of maximum spin
in the direction of magnetization i.e., M, = S.
If the temperature is raised somewhat, the state
lVls = S -1 will also begin to be populated. Let
us denote by 1 - y and y the fractional populations
of the states Ms = S and lVls = S - 1 in (11).
If f(Ma) denote the expression (11) regarded as a
function of Mg, the anisotropy constant at low

temperature should be given by

where Klo is the value of K, at T = 0.
Using the formula (11) to evaluate /, one finds

immediately f ( S - 1) == (1 - 10 /S) f(S) and so

The saturation intensity of magnetization is pro-
portional to Ms, and hence

Comparison of (17) and (18) suggests at first sight
a linear relation

However, we must remenber that the anisotropy
vanishes at the Curie point. An extrapolative for-
mula which meets this condition and which agrees
with (19) in the low temperature domain, where the
anisotropy is appreciable is clearly the relation (15).

So far we have used quantum mechanics. In

classical theory treated by Zener [19] the aniso-
tropy coefficient KI is proportional to the zonal
harmonic

where 0 is the angle between the spin vector S and
the direction of magnetization (cf., Eq. (11)),
where in the classical limit M, IS - cos 0 and only
the terms of highest degree in Ms, ,S need be retai-
ned). The anisotropy is proportional to the ave-
rage of (20). At low temperatures, the deviations
of cos 0 from unity are small, and so

and

since cos 0 = 1 at T = 0. The magnetization is
proportional to cos 0 and so at low temperatures

Hence we are again led to as relation of the
form (19) which extrapolates to (15) when the
proper behavior at the Curie temperature is
included. Zener is able to derive (15) exactly
rather than by extrapolation, but the classical dif-
fusion model which he uses is physically admissible
only at low temperatures, where (19) is valid.

TEMPERATURE VARIATION FOR QUADRUPOLE-
QUADRUPOLE COUPLING. - If the spins of the two
adjacent atoms are parallel, then only the state of
maximum collective spin for the two atoms contri-
butes to the density matrix, and the temperature
variation of the anisotropy will be precisely the
same as with the octopole potential. In the spin
wave picture, at low temperatures two adjacent
elementary magnets are practically parallel, so that
this assumption is warranted, and the tenth power
law is valid. Originally the writer [16] obtained a
sixth power law, as he assumed that the averages
for adjacent atoms could be computed indepen-
dently. Then the anisotropy coming from (12) is
proportional to

instead of C(1 - 10 Si-1 y) if the populations of
MS = Si - .1, Si are j, 1 - y. Keffer [20] first.
pointed out clearly the cause for this difference.
Actually, from the spin wave model, or otherwise,
we know that there is a high degree of correlation
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between neighboring spins in the region where
anisotropy is important. Until recently, it was
generally believed that the tenth power law was
strikingly confirmed experiirentaily in iron, but
new or revised experimental data seem to indicate
that at low températures a lower power, perhaps
5 is required. Carr suggests that the discrepancy
may be caused by thermal expansion, neglected
in the usual theory.
We can trace the différence betwen the corre-

lated and uncorrelated models a little further.
The uncorrelated model is equivalent to using
Wigner coefficients to compute the values of C
in (13), and then averaging over different values
of Ms1, M,2 thus resolved into the S, Ms system of
representation. The state Ms = S - 1 makes a
contribution to K, of opposite sign to that of S,
and of much larger absolute magnitude. This is
the basic reason why such a high power of M lM 0
as the tenth appears in the expression for Kl.
For example, for S = 2 the values of the bracketed
factor in (11), are respectively 3/2, - 6, + 9 for
M8 = 2, 1, 0. With uncorrelated atoms, redu-
cing M8 may reduce S, and the repercussion on the
anisotropy is less drastic than if M8 is changed
but S kept unaltered. Consider, as a particular
case, two spins of magnitude 1 with quadrupole-
quadrupole coupling. Only the state S = 2 con-
tributes to (14), as already mentioned. However,
if Ms is reduced from 2 to 1 corresponding to the
two possibilities 0, 1 and 1, 0 in individual spacial
quantization, half the time the system will be in a
state S = 1 rather than S = 2, in accord with the
fact that the Wignerian resolution of 0, 1 + 1,0
involves S = 1 and S = 2 equally. This means
that 50 % of the time the reduction in M, simply
" washes out " the anisotropy. Hence instead

/ JJ 

giving us the sixth rather than tenth power law
(cf., Eqs. (17) and (18)).
We must by all means mention that Akulov [17]

obtained the tenth power law as far back as 1936.
He used a classical calculation more or less equi-
valent to that involved in our Eqs. (20) and (21).
Heostensiblyassumedthat allmagnetsinthe crystal
were parallel and precessed together around the
direction of the field. This picture is not correct,
and so at one time the writer criticized Akulov’s
calculation. However, since the quadrupole-qua-
drupole forces are of short range, it is sufficient to
assume that adjacent spins are substantially
parallel. The spin wave picture shows that this
is the case at low temperatures, for the spin waves
can be regarded as a sort of corkscrew precession
of the spin distribution. So one can now easily
understand why Akulov’s calculation led to the
correct result, and only requires a minor différence
in interpretation to be physically admissible.

HIGHER ORDER HARMONICS. -- To explain the
higher order anisotropy K2 ai. a2 a3 it is necessary
to introduce terms of the sixth order in the spins,
whose transformation properties correspond to
those of a spherical harmonic of the sixth rather
than fourth degree. Still higher order terms are
in principle possible. If we consider the aniso-
tropy associated with poles of the 2n th degree, and
denote by K(2n) the corresponding anisotropy, the
generalization of (15) is

a result first given by Zener for a classical model. It
is necessary that n be even, and that S n /2 to
get a non-vanishing anisotropy.
The anisotropy coefficients K(2n) satisfying equa-

tion (23) are not to be confused with the conven-
tional higher order anisotropy coefficients of the
experimentalists, as the angular dependence. is dif-
ferent except in the case n = 4 ; for instance,
K(12) is a linear combination of K, and K2.
To prove (23) classically, we need only note that

the expansion of Pn (cos 6) about 6 = 0 is

as one sees from the differential equation

of zonal harmonies. When (21) is replaced by (24),
we obtain (23) in place of (15).
The same result also holds true in quantum

mechanics, as is most readily demonstrated by the
Kramers symbolic method [21J. The transfor-
mation properties of Pn are those of §n 1)" ln ! in his
symbolism. His elegant application of -spinor ana-
lysis shows that the diagonal matrix elements
 SM V2’IISM &#x3E; of a potential corresponding to
poles of the 2rth degree (whose transformation
properties under rotation are similar to those
of FJ are proportional to (S + M)! (S - M)!
times the coefficient of

in the expression

Consequantly one has

whence (23) follows in the same fashion as did (15)
frÓm (16) and (17).

HIGHER ORDER EFFECTS OF TERMS OF LESS THAN
CUBIC SYMMETRY. - Coupling of dipolar or pseudo-
dipolar structure
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is well known generally to average to zero if there
is cubic symmetry. However if one consider

. second order effects, i.e., the perturbing influence
of the part of (25) which is non-diagonal in the
exchange or molecular field energy, an anisotropic
member of cubic structure can be obtained, as has
been shown by various writers [16, 22]. In an

interesting recent paper, Wolf [23] has called atten-
tion to a similar situation in connection with a
one-atom spin-Hamiltonian with axial symmetry,
i.e.,

or more generally (rhombic symmetry),

In the first approximation the effect of (26) is
independent of direction if there is cubic sym-
metry. However, in the second approxi-
mation (26) will contribute to the anisotropy in
the order a2/J or, equivalently a2ig g Hex where J
is the exchange integral and Hex is the exchange
field.
The theory for the second order effects men-

tioned in the preceding paragraph has the merit
that it gives a contribution to .Kl wbose sign is

unambiguous for a given lattice arrangement.
According io unpublished work of Keffer, it gives
the tenth power ]aw (15) like the octopolar model
if the corresponding approximations are made in
both cases.

THE STRANGE CASE OF NICKEL. - This metal has
an anisotropy which varies approximately as the
fiftieth power of the magnetization at low tempe-
ratures. No proper explanation of this behavior
has been devised. Since nickel has a magnetic
moment of less than a Bohr magneton per atom,
it is natural to try and attribute its magnetization
to the higher order affect of pseudo-dipolar cou-
pling, as this is the only mechanism which gives
anisotropy from a pair of atoms when S ==1/2.
The resulting anisotropy, though of proper sign at
low temperatures, has nothing like fast enough
variation with temperature. A possibility to be
considered is an octopolar potential from clusters of
four atoms each with spins 1/2, or transient pairs
each with spin 1, so that the collective spin is 2.

However, such models, none too likely in the first
place, give the tenth rather than fiftieth power.
We will not pursue this subject further especially
since nickel is a conductor and so not a good sub-
stance anyway to test calculations based essen-
tially on the Heisenberg model.

FERRITES. - On the other hand, the ferrites
should be a good proving ground. The Mn++,
Fe+++ and Fe++ ions all have spins of 2 or

greater. So one can try applying the onc-atocn

octopolar model with much better justification
than in metals. This has been done by Yosida
and Tashiki [24] and by Wolf [23]. A difficulty is
that the ferrites are composed of two or more
kinds of magnetic ions, and one must segregate the
contributions of individual ions to the observed
total anisotropy. To facilitate this resolution,
Yosida and Tachiki calculate first of all the amount
of anisotropy to be expected from the nickel ions.
They find that it accounts for only a small percen-
tage of the measured anisotropy of nickel ferrites,
and so attribute the anisotropy primarily to other
ions in these compounds. This conclusion is proba-
bly correct, for the anisotropy of nickel ions is low on
two counts ; its ground orbital state is non-dege-
nerate in a cubic field, and its spin quantum
number is S =1, so that it is incapable of splitting
in an octopolar potential of type (8). It should not
however, be inferred that a one-atom model of
type 8  2 is incapable of generating any aniso-
tropy, for even without such a splitting, the polari-
zability in the exchange field need not be centro-

symmetric, as Yosida and Tachiki show. They also
essay a calculation of the anisotropy contributed
by the ferrous ion Fe++. It is surprising that the
anisotropy is not much larger than it is in compa-
rison with ferric and manganic ions, for Fe+++
and Mn++ have 6S ground levels, whereas the orbi-
tal degeneracy of the ground state of the Fe++ ion
is lifted only in virtue of the non-cubic part of the
crystalline field. Yosida and Tachiki assume, in
accord with crystallographic evidence, that this
part of the field is mainly of trigonal symmetry,
which can split the cubic r5 orbital triplet into a
doublet and singlet. The only moderate anisotropy
of the ferrous ion shows unequivocably that the
singlet is deepest. By assuming a fairly large
trigonal splitting, determined from the observed g-
factor, these workers compute an anisotropy coef-
ficient KI of the proper order of magnitude and
sign. This is a difficult and tricky calculation,
even as regards the question of sign. Yosida and
Tachiki properly include besides the usual A. L. S
term, a spin-orbit coupling of the form

which results from spin-spin interaction inside the
ion. The potential (27), though much smaller than
the conventional spin-orbit term, can be quite
important in creating cubic anisotropy, as it can
do so in the second rather than fourth order. It is
much easier to obtain a positive than a nega-
tive Ki. Both the fourth order effect of AL. S
and the second order effect of (27) give a posi-
tive K1. Though they do not mention this fact
explicitly, Yosida and Tachiki are able to obtain a
negative K, from the manifold r5 only because of
a cross-effûct involving ,A.L.S to the second powcr
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and (27) to the first. The constants p and A have
to be just right to make the cross term prepon-
derant. There are other effects besides those
considered by Yosida and Tachiki which might
modify the results ; viz., the polarization by the
exchange field, and various two-atom effects, such
as pseudo-dipolar or quadrupole-quadrupole cou-
plings. Wolf points out that the misplacing of a
few ions in tetrahedral rather than octohedral sites
may profoundly influence the anisotropy ; because
of inversion of the Stark pattern, a misplaced
nickel iron, for instance, can become very strongly
anisotropic like cobalt. In the case of the Mn++
and Fe+++, Yosida and Tachiki do not attempt to
compute the absolute magnitude of the anisotropy
constants theoretically, but instead wisely take
these from the experimental data on anisotropy
and magnetic resonance. The anisotropy of the
Fe+++ ions is apparently of opposite sign on the
two kinds of sites, and considerably larger in

magnitude than for the IVIn++ ions.
Yosida and Tachiki study in some detail the

temperature variation of the anisotropy of the
Fe+++ and Mn++ ions on the basis of the one-
atom octopolar model (8). They find good agree-
ment with experiment, using Eqs. (10) and (11)
with the distribution of values of Ms as a function
of T determined by means of a molecular field
model. They also find that this model represents
quite well the dependence of magnetization on
temperature. This is rather surprising as spin-
waves should work better than Brillouin functions
at very low temperature but they focus their
attention primarily on somewhat higher tempe-
ratures. They find, in agreement with experiment,
that the magnetization at medium temperatures
(around a third to a half the Curie point), the
anisotropy is somewhat higher than given by the
tenth power law (15). This is not too surprising,
for (15) is an extrapolative bridge between (19) at
very low temperatures and proper behavior at the
Curie point. At very low temperatures, the calcu-
lations with any octopolar model must of necessity
agree with (15) or (19), but at medium tempe-
ratures the anisotropies which Yosida and Tachiki
compute should be more reliable than those fur-
nished by the connection formula (15).

THE GREAT ANISOTROPY OF THE COBALT

FERRITES. - The cobalt ferrites have an aniso-

tropy ten to a hundred times larger than the other
ferrites. This fact has generally been regarded as
something of a mystery, though various writers
[23, 24] have suggested that it might somehow be
attributed to a degenerate basic orbital state.
Yosida and Tachiki give the impression that cobalt
is a more complicated ion to treat than the others.
Actually it may bè easier, as anisotropy enters as
a lower order effect. One can show [25] that the

splitting of the cubic orbital triplet r4 into a
doublet E and a singlet A by a trigonal field along
the [111] axis, which presumably is the dominant
non-cubic correction, should be of the form.

and that furthermore the constants a1, a2 should
have values in Co++ respectively - 1/10 and
- 3/2 those in Fe++, provided the crystalline
potential, i.e. the configuration of the surrounding
atoms is the same. Hence, for most values of al,
a2, the splitting should change sign in passing
from Fe++ to Co++. The comparatively small
measured anisotropy of the ferrous ions requires
that the A level be lowest in Fe++. One can

expects that then the orbitally degenerate E pair
is deepest in Co++, and if so an enormous

anisotropy results. It can be further shown that
then the direction of easy magnetization is [100], in
agreement with experiment. The unusual aniso-

tropy of the cobalt ferrites is hence qualitatively
understandable. Furthermore., in a recent publi-
cation, J. C. Slonczewski [26] has a considerable
measure of quantitative success in accounting for
the magnitude and temperature variation of the
anisotropies of ferrites containing small concen-
trations of cobalt, on the assumption that the E
levels are deepest and that à is very large com-
pared to the spin-orbit constant. With this môdel,
the formula for the anisotropic part’ of the energy
at T = 0 is very simple. If the crystalline field is
not powerful enough to destroy Il coupling, the
angular momentum of an E state about the tri-

gonal axis t is + 3/2 (h/27r). As S = 3/2 the spin-2

orbit energy is - 9 Acos (M, and is direc-

tionally dependent. If the magnetization M is
along the [100] direction, icos (M, t)l - 1/0
while for [111], this cosine factor is unity for one-
fourth and 1/3 for three fourths of the ions. If
the gaseous value 180 cm-’ is employed for the
spin-orbit constant A, the computed anisotropy
E(Ill) - E(100) per cobalt ion is 30 cm-1, about
twice that observed for small concentrations of
cobalt. The agreement as regards order of magni-
tude is quite satisfactory in view of the approxi-
mations made. This calculation gives only the
part of the anisotropy which is linear in the concen-
tration of cobalt. At higher concentrations there
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are deviations from linearity which are presumably
due to interactions between cobalt ions, for which
an adequate theory has not yet been developed.
The writer wishes to express his thanks to the

staff of the University of Hawaii for the use of
their journals and library facilities, which made
possible the writing of the present report.
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DISCUSSION

Mr. Kikuchi (Comment). - The results of the
constant coupling approximation had been obtai-
ned before van Kranendonk and Kasteleijn as

follows :
(1) YvoN (J.), Cahiers de Physique, 1943. ,

(2) KIKUCHI (R.) and BUSSEIRON-KENKYU (in
Japanese, 1951) reported at the Dirham meeting of
American Physical Society, 1953.

(3) NAKAMURA (T.) and BUSSEIRON-KENKYU
(in Japanese, 1953). The first two people used
different method from van Kranendonk’s but
Nakamura’s method is exactly the same as the
constant coupling method. Kikuchi’s paper has
appeared in English in the latest issue of Annals of
Physics.

Mr. Nagamiya. - 1 might add : Nakamura has
shown by his method that the susceptibility of an
antiferromagnet with spin 1/2 shows a maximum
at a temperature which is slightly higher than the
Néel temperature.

Mr. Vonsovskij. - What is the shape of the
dispersion relation for spin waves in ferrimagnetic
substances with equal spins on the sublattices
(ISII = IS21) ) and gl # 92 ? Our recent calcu-
lations (Turov, Irkhin and Vonsovskij) give a linear
dispersion formula, and lead to a T2 law for the
magnetization, whereas you obtain a T3 law.

Mr. Van Vleck. - According to the theory of
Kouvel and Brooks, the energy of the lowest
energy spin waves is proportional to the wave
number k, and the deviations of the saturation
magnetization from its maximum value are pro-
portional to T3.

Mr. Riste. - Concerning the dispersion relation
in ferrites, 1 may call to your attention a paper by
KAPLAN (T.A.) (in Phys. Rev., 1958,109,182.) where
he claims to have found a mistake in the calculation
by Vonsovskij and Sedov when they obtained a
linear relation. When introducing a correction

Kaplan finds that V. and S.’s calculation also gives
a quadratic law. Neutron scattering experiments
by BROCKHOUSE (published in Phys. Rev.) and by
RISTE, BLINOWSKI and JANIK (to be published in
Phys. Chem. Solids) are in agreement with the
quadratic law.

Mr. Wohlfarth (adds the following remarks). -
The T3/ law holds almost up to the Curie point
in Gd. This would agree with Dyson’s calcu-
lations.

It is not certain that the (M /MO)10 power law
for the variation of K, in iron is completely substan-
tiated by experiment, because of experimental
errors. Another exponent might also fit the mea-
surements,
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It would be interest to calculate K for CoPt and
FePt, which are tetragonal, and have exeedingly
high K values.

Mr. Kittel. - Prof. Van Vleck and 1 have exten-
ded the theory of the temperature dependence of
anisotropy to include the magnetoelastic terms in
the free energy. We are then able to discuss the
temperature dependence of magnetostriction. We
find that the " five constant " fit to the magneto-
elastic energy of a oubic crystal, where expressed
properly in terms of spherical harmonies, gives one
contribution varying with temperature as (.lVl IMO) 3
and one contribution varying as (M / M 0)10. -

Mr. Jacobs. - The magnetocrystalline aniso-
tropy constants of Fe at 77 OK usually used in
recent graphs of (KIKO) vs (M/Mo) comes from
Dr. Bozorth’ texbook. More recently, in the
Handbook of the American Inst. of Physics,
Dr. BOzORTH reports a lower value. An identical
value is obtained in current work by Dr. C. D.
GRAHAM ( Gen. Elec., U. S. A.). The use of these
values in the above graph suggests a lower value of
power law dependency, e.g. perhaps 4 instead of 10.

Mr. Drey f us. - Les interactions dipolaires
magnétiques ont pour effet d’affecter considéra-
blement la forme de la relation de dispersion des
ondes de spin. Ceci a été montré par Holstein et
Primakoff et plus récemment par Kittel. J’ai cal-
culé l’influence de ces interactions sur les propriétés
thermodynamiques. Le résultat est le suivant :

pour l’aimantation la loi en T3/2 est changée en T2.
Pour la chaleur spécifique la loi est changée de T3/2
en T5/2. Ces effets ne sont sensibles qu’en dessous
d’une température dépendant de l’intensité d’ai-
mantation (pour le fer de l’ordre de 1 à 2 OK,
pour les ferrites de l’ordre de 10 fois moins). A des
températures encore plus basses, les modes
« magnétostatiques » deviennent seuls importants
et les propriétés thermodynamiques dépendent
alors de la forme de l’échantillon.

Mr. Pearson. - 1 should like to ask Prof. Van
Vleck if he could offer some explanation of the ano-
malous temperature variation of anisotropy ener-
gyin magnetic (Fe304) above its transition point.

Mr. Van Vleck. - 1 know of no explanation.
Mr. Smit. - The degeneracy of the lowest state

of cobalt and iron ions in ferrites is determined by
the sign of the trigonal field which is superimposed
upon the octahedral field. This trigonal field is
according to Vonsovskij, due to the non cubical
surrounding of the cobalt ion by metal ions. This

predicts the correct sign for Co in magnetite. On
the other hand the displacement of the oxygen
ions, described by the so-called n parameter
(n ideal = 0.375) also înduces a trigonal field,
which for n &#x3E; 0.375 is just opposite to that of the
metal ions, because it concentrates negative charge
around one body diagonal instead of positive
charge. Simple calculations, disregardingthe pola-
risation of the oxygen ions, show that the effect
of the n parameter is more important than the
effect of the metal ions for n &#x3E; 0.380. In fer-
rites with a large n parameter, as for instance Mn
ferrite (n = 0 .,385) and in ferrites with much zinc,
one should therefore expect the role of ferrous ions
and of cobalt ions to be interchanged. Experi-
mental evidence for this to occur this may be
present in cobalt substituted Mn ferrite, in which
the effect of Co is more than 10 times as small as in
magnetite, and in mixed cristals of Fe304 and
MnFe2O4 for low concentration of magnetite, in

which, àfter Dr. R. W. Pearson, the anisotropy
arising from the extra ferrous ions appears to be
positive.

Mr. Nagamiya (remark). - One must be careful
in calculating the crystalline field. It represents
a combined effect of point changes, space changes,
electron transfer, and the exchànge of electrons.
It is dangerous to draw a definite conclusion from a
simple calculation.


