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Résumé. 2014 La localisation faible des ondes est obtenue a partir d’une théorie de diffusion multiple
cohérente. Cela conduit à une augmentation de la section efficace différentielle dans la direction de
rétrodiffusion. Celle-ci se manifeste de façon macroscopique par une valeur deux fois plus grande
de l’intensité rétrodiffusée dans un cône très étroit autour de la direction d’incidence, d’ouverture

angulaire 03A6c = 03BB/l . 03B8(03A9)/03C4, où 03B8(03A9) est le temps de résidence. Les corrections aux coefficients de trans-
port sont alors obtenues à deux et trois dimensions à partir de 03A6c. Un développement en 03B5 autour

de la dimension critique inférieure dc = 2 permet alors d’obtenir un seuil de localisation pour les
ondes à d &#x3E; 2 et le comportement critique associé. On discute enfin de différentes situations expéri-
mentales permettant d’observer à la fois le cône de rétrodiffusion et les exposants critiques.

Abstract. 2014 The weak localization of waves is formulated in terms of coherent multiple scattering
theory. This leads, in the backscattering direction, to an enhancement of the differential cross-section.
It manifests itself macroscopically by the doubling of the backscattering intensity in a narrow cone

of width 03A6c = 03BB/l . 03B8(03A9)/03C4, where 03B8(03A9) is the residence time around the incident direction. The cor-

rections to transport coefficients are then derived both in two and three dimensions in terms of 03A6c.
An 03B5-expansion around the lower critical dimension dc = 2 is then performed and leads to a wave
localization threshold for d &#x3E; 2 around which the critical behaviour is studied. Different kinds of
experimental situations leading to the observation of this backscattering cone and critical exponents
are then discussed.
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1. Introduction.

The localization problem is now well-known to be an enormous and very dissymmetric hydra.
While its electrical aspect, i.e. localization in electronic systems concerns a great number of solid
state physicists, its non-electronic counterpart, for wave propagation in disordered media has
been neglected until very recently. Most of theoretical predictions were limited to transport
coefficients of metals as magnetoresistance of impure metals, temperature dependence of electrical
conductivity, etc. The experimental confirmation of these predictions establishes the theory
of weak localization on a strong basis. However, it is legitimate to ask if more direct observation
of this general phenomenon might be envisaged in the field of wave scattering in random media.
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Recent progress in the interpretation of the weak localization phenomenon as a constructive
interference effect shows that it only depends on the wave nature of the excitation and neither on
quantum aspects nor on the nature of the statistics. To first order in All, where is the wave
length and I the elastic mean free path, this interference effect leads to a large anisotropy of the
differential cross-section in the vicinity of the backscattering direction. We have found that inside
a cone with an aperture of the order All, the backscattered intensity is twice the value obtained
within the standard incoherent multiple scattering approximation. Moreover, the specificity of
this effect also appears in the power law time dependence of the backscattered echo from an
incident pulse instead of exponential relaxation for the incoherent wave. A direct consequence
of this constructive interference is the reduction of the radiation diffusion coefficient as in the case
of electrons. This reduction can lead to a complete vanishing of the diffusion constant for ~,  l.
This conclusion is supported by a simple multiplicative renormalization group approach in
2+s dimension which produces the critical exponents near the threshold. Finally, the sensitivity
of the coherence effect to different dephasing processes is analysed, mainly those associated with
confined geometry and moving impurities.

In this Letter, we attempt to present the weak localization phenomenon of waves in 2 and
3 dimensions in a somewhat transparent way. Some of the results established here are well-known :
time-dependence of the response (echo) to an incident pulse [1], dephasing process due to impu-
rity motion [2]. However some of our results are new :

i) Critical cone for coherent backscattering - y - 20132013’(where ~ is the frequency bandwith) g ~~ l i ~ q Y

of the backscattered wave and r the elastic relaxation times).

ii) Preliminary results on the frequency thresholds* for localization of waves due to Rayleigh
scattering.

iii) Critical behaviour of diffusion constant near w*, and

iv) Dephasing effect associated with restricted geometry. We hope that this simple presen-
tation will motivate new experiments in these fields.

2. Incoherent and coherent multiple scattering : the factor 2 t

We consider the problem of the propagation of an incident plane wave in an inhomogeneous
medium with a density p of fixed impurities described by a linear wave equation. We assume that
these impurities act as pure elastic scatterers and that no absorption of the radiation results
from this scattering. This problem can be defined in terms of several characteristic lengths. First,
the wavelength of the incident field, and second, the mean distance p-’I" between impurities
(d being the space dimensionality). In the limit ~,  p - 1 , the transport of the incoherent field
intensity through the medium can be described in terms of a Boltzmann-like equation leading
to the elastic mean free path I. Now the two characteristic lengths of the inhomogeneous medium
are A and I for an incident wave which are functions of the frequency s.

Let us define the quantity p(s, s’) as the probability for the incoming field in direction s to be
scattered in direction s’ (s and s’ being unit vectors). Under stationarity conditions, p(s, s’) is
given by

where is the total scattering cross-section and ~(s, §’) the scattering amplitude. The expression
of/?(s, s’) can be derived from the vertex function associated to the two propagator correlation
function C(rl,r2;r~,r;) = GR(rl,r2)GA(r~,r;», GR and G A being respectively retarded
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and advanced Green functions of the free propagating field, or from its Fourier transform
C(p, p’; q, q/) by :

There are two classes of diagrams for multiple scattering :
- The ladder diagrams (Fig. la) which give the incoherent contribution PL to the scattering

probability.
- The crossed diagrams (Fig. Ib) describing the coherent contribution pc to the probability.
Then, we have :

Fig. 1. - (a) Ladder diagram for incoherent multiple scattering; (b) crossed diagram for coherent multiple
scattering and (c) identity relation for crossed diagrams in terms of ladder diagrams.

By using the time reversal symmetry of the scattering potential of the impurities, the crossed
diagrams can be expressed at each order of the multiple scattering expansion by the equality of
figure Ic. More precisely,

Note that for the special situation of backscattering, s’ = - s

and

Therefore, the total probability of backscattering p(s", - s) including coherent and incoherent
scattering is exactly twice the incoherent multiple scattering probability. This result is well
known [1, 3] and our proof shows its full generality.

3. Cone of backscattering and coherence bandwith.

We have calculated the coherent backscattered intensity by the Bethe-Salpeter equation for
the maximally crossed diagrams and the detail of this calculation will be reported elsewhere [4].
Here, we want to establish the main results of the diagrammatic expansion in a very simple and
physical way following the presentation of G. Bergmann [1] for the weak localization : « time
of flight experiment with conduction electrons ». Let us assume first that the propagation in this
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very inhomogeneous medium is such that the waves become depolarized rapidly over distances
of the order of the mean free path I. The radiation fields will therefore be considered as scalar
waves without polarization.
Assume that, at t = 0, a pulse enters the medium with wave vector k = 2 7c/~. The available

final states for the elastic incoherent multiple scattering are located in the spherical shell of radius k
and thickness 1/1. The number of fmal states is given for isotropic scattering described by I (d = 2
or 3) by

At time t later, the wave field explores a volume of linear size (Do t)1~2 where Do is the unper-
turbed diffusion coefficient. The smearing of the wave vector M due to this confinement is given
by (Do t) -1/2. The available states for the coherent backscattering is therefore given by (M/
from which we obtain the ratio of coherent backscattering intensity over the total number of
scattered states surviving up to time t :

This result has been already established [1] for d = 2 : the long time tail of this echo originates
in the multiple scattering processes of the incoming wave field of the pulse for a time t. All possible
paths from + k to - k are taken into account in the infmite medium (for a restricted geometry
such as a slab, a typical cut-off in time would describe the limitation in the number of multiple
scattering events (see Sect. 5)). The classical analog of this result is the probability of return to the
origin at time t which involves all possible loops of a free random walk.
From scattering wave theory we know that the real part of the Fourier transform of time

development of the echo is related to the two-frequency correlation function or equivalently to
the coherence bandwith [5] (broadening of a pulse due to the random medium). Let us call B(S2)
this Fourier transform where ~2 measures the frequency shift of the backscattered radiation.
For vanishing ~2, i.e. for ~T ~ 1, we obtain from equation (8) :

This result has a classical analog in the theory of the random motion of a particle. 8d(SZ) is the
residence time of the particle at the origin during a time interval of order 1/~2. In 3 dimensions,
the residence time of the particle at the origin is finite and of order r while, due to the recurrent
nature of the random walk in d = 2, it diverges although it explores all the space. Then, the
logarithmic divergence of0(r), which has been settled by various authors [6], is a signature of the
two-dimensional localization of waves. From equations (8) and (9) we have access to the spectral
relative intensity of coherent backscattering which is proportional to

This result has a direct implication for the differential cross-section. Let us call 7; the incoherent
contribution to the differential cross-section in the direction of backscattering. We have previously
established that the intensity of coherent backscattering is twice the intensity of incoherent
backscattering. Then for the backscattering direction, the coherent differential cross-section O’c
is just twice ai at each frequency. Expression (10) allows us to go beyond this property, since
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it gives the value of the total cross-section for backscattering. It defmes a cone in such a way
that :

where 0" - ’ is the small angular aperture of the cone in d dimensions with 0 the angle of the cone
in the direction of the backscattering defmed in figure 2. From equation (11) one obtains the
characteristic angular aperture 0, of the cone for the coherent backscattered intensity :

where a and b are numerical constants we identify below.
The main physical result is contained in the dimensionless ratio All of the wavelength over the

elastic mean free path of the radiation. This result of a perturbative nature is valid not only for
~// ~ 1 but also, in 2 dimensions for À/l.1n 1/Hr ~ 1. This condition limits the validity of this
formula to the low frequency range : it is precisely the range of validity of the perturbation theory
for the weak localization in 2 dimensions. We believe that the singularity at ~2 = 0 is non-physical
and needs a scaling treatment as developed in section 5 where, in the singular limit Q --+ 0, the
dimensionless ratio ),,/1 is renormalized and provides a term which suppresses the logarithmic
divergence.

Fig. 2. - Profile intensity in the backscattering direction. ~~ ^-_’ All is the characteristic angle of the cone
inside of which coherent intensity is backscattered.

4. Correction to the diffusion coefficient.

It is well known in transport theory [7] that the mean free path can be directly deduced from the
differential cross-section Q(~) by the following formula :
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where 1 + cos q5 is the geometrical term entering the transport theory due to the anisotropy of the
relaxation process. Actually it weighs on the backscattering by an extra factor 1 + cos ~ ~ 2.
The additional contribution of the coherent backscattering will shorten the mean free path as
compared to the incoherent contribution. For an isotropic scattering where ai is independent of q5,
this shortening of I is better described by the reduction of the diffusion coefficient from the incohe-
rent value Do

By comparing these expressions with exact results obtained by summing the infinite series of
maximally crossed diagrams [4] we identify the numerical constants a = 3/4 n and b = 1/4 n.

First it must be noticed that this diffusion coefficient is parametrized by the energy co through Do
and the ratio À./ I. As expected the contribution of the coherent backscattering reduces the diffusion
coefficient and consequently all the transport coefficients by a term proportional to the charac-
teristic angle 0,.. Here again, the validity of the present approximation of weak localization limits
the correction to small value of 0,. But nevertheless the question of the vanishing diffusion
coefficient or equivalently the existence of an edge of localization for waves emerges from this
context. Additional assumptions are then necessary to establish such a localization threshold.
These are developed in the next section.

5. Renormalization-group treatment of the perturbation expansion-scaling.
The previous perturbation expansion of D shows how disorder modifies the diffusion coefficient
Do. The form of the correction to D for d = 2 given by equations (12) and (14) can be rewritten as :

It strongly suggests the possibility of a scaling theory based on one parameter only to = All and
with a characteristic frequency cut-off ~l 2 = 1/r. This scaling behaviour can be obtained within
the usual one-parameter renormalization group treatment [8].
The divergence in d = 2 of the corrections to D at each order of perturbation [6] shows that d = 2

is the lower critical dimension for the problem of localization. It allows us to perform an 8-
expansion in d = 2 + 8 dimension. Consider the renormalization of the vertex F~ S) defmed
by D = Do ro(t, Q), according to

The correction to D to first order in to is proportional to to(SZ~)E~2. Then, if we rescale the frequency
G according to Q/A 2, the coupling constant scales as A’ t(A). This leads to the following relation
for the scaling variables :

The identification of both the standard 1/8 expansion of Z and Fo to first order in 1/E gives :
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Then the low frequency behaviour of D(Q) is obtained by taking the limit A -+ oo, where the
scale invariance of the renormalized vertex r leads to the following renormalization group
equation for 7~ :

with

Studying the critical behaviour of D when 0 -+ 0 is equivalent to study that of t(A) in the same
limit A -+ oo. Now, we have :

and with the aid of equation (18) : :~(t) = t(s - 2~).
Then, for d &#x3E; 2, the trivial fixed point t = 0 exchanges its stability with the non-trivial solution

t* = s/2 7T which is stable for A -+ oo as shown in figure 3. This fixed point corresponds to a
mobility edge for d &#x3E; 2 in the spectrum parametrized by co between delocalized modes at low
energies and localized modes for co &#x3E; (u* where t(co*) = t*. An equivalent result has been obtai-
ned [9] by means of a mapping of the localization problem to a non-linear a-model.
The renormalization group equation (19) allows us to obtain the frequency dependence of D

at the critical point co*. We then have

Fig. 3. - Plot of ~(t) vs. t for d &#x3E; 2 and d = 2. ~(t) represents the variation of the coupling constant t = All
with the frequency scale and t* the fixed point corresponding to the localization transition.

and the resolution of equation (19) gives :

and

which confirms the vanishing ofDatc~fbr~-~0 and gives the behaviour of D at zero frequency
near the localization threshold. It is then possible to derive a complete scaling theory for the
Anderson transition [10] for wave propagation in a random medium, without knowing the under-
lying field theory.
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6. Discussion and conclusion.

There are two main results in this study. First, the characteristic angles 0,,, in equation (12) of the
spectral intensity cone of backscattering are obtained in 2 and 3 dimensions, in terms of the ratios
All and ()(Q)/1:. Second the appearance of a threshold of localization as well as the critical beha-
viour of diffusion coefficient around the critical point are discussed by a direct scaling argument.
The possible existence of this cone would be a direct confirmation of the concepts of weak

localization and calls for new experiments. In view of measurements we must discuss various
phase breaking processes for coherent backscattered radiation. To any kind of dephasing process
we can associate a characteristic cut-off time 1:c beyond which the contribution of the multiple
scattering path to the coherent backscattering vanishes. This is well known for electrons where the
inelastic scattering time introduces a natural cut-off to the correction of electrical conductivity.
The general method for handling 1:c in the theory is to cut-off time development of the echo above
i~. In the limit of very low frequency 52~~  1, the dephasing correction is simply evaluated for
Tc &#x3E;&#x3E; i :

In 2 dimensions the divergence for ~2 -~ 0 is indeed suppressed : i~ 1 is the lower cut-off frequency
for scaling invariance. In 3 dimensions three types of dephasing processes could be encountered
for weak localization of waves : absorption with a characteristic time La’ impurity motion for
which T~ = rz is the time of motion of the impurity over a distance A, and finally finite geometry
effect. The correction r~ has already [2] been discussed : it is weak since it involves the ratio of
the impurity average velocity over the velocity of light or sound (for ultrasound this correction
could be sizeable). More precisely, we find

for a dilute gas of impurities with velocity vi, while for Brownian motion (diffusion coefficient Di)
the correction is still weaker : t). = ~,2/D;. The case of impurities imbedded in a slab of thickness p
can be simply treated if the incoming wave from the left is totally transmitted outside on the right.
In this case the cut-off time tc is just the time for the radiation to diffuse up to a length scale of
order ~ : _

The fmite geometry correction at d = 3 is therefore (r:/r:/l)1/2 = 1/Ei, i.e. the ratio of lover ~.
The problem of localization threshold deserves to be discussed in the context of the Rayleigh

scattering [5] of electromagnetic waves. From a standard formula for the Rayleigh mean free
path 1(00) ~ 00-4 we define in d = 3 :

with
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where a is the radius of spherical particles of relative dielectric constant 8r (involving the condition
of validity : ~, &#x3E; a). The frequency threshold (0* is given at d = 3 by the extrapolated expression
(21) for 2 + e = 3. From this relation we obtain a threshold (0* = 0.54 WR. A very similar result [4]
can be obtained for sound waves with Klemens scattering on mass impurities : s* = 0.54 WK
where (OK = 0.14 ~M 2~3 (OD-
The approach of the threshold should correspond in both cases to situation of very dense

concentration of defects : n; a3-+ 1 for light and each atom considered as mass defect for phonons.
The realization or observation of such situations would produce blackhole for high frequency
waves since no intensity could emerge from such dirty medium despite the fact that no absorption
occurs in the scattering on impurities.
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