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Résumé. 2014 On a mesuré la constante diélectrique complexe d’un système métal-isolant percolant,
au-dessous de pc, à deux et trois dimensions. A 2D on observe un accord parfait avec la théorie des
lois d’échelle, mais à 3D, l’accord n’est bon qu’a basse fréquence.

Abstract. 2014 We measured the complex dielectric constant of a percolative metal-insulator system
below pc, in two and three dimensions. In 2D, a perfect agreement with the scaling theory is observed,
but in 3D the agreement is good only at low frequency.
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The AC conduction of a metal-insulator system near the percolation threshold is an important
problem, but it has received attention essentially from theoreticians [1-3]. The motivation of
the present work comes from this situation. We present in this Letter dielectric measurements
in a relatively large interval of frequencies (102-10’ Hz) on a percolative system in 2D and 3D.
We compared the results with the scaling approach and found that there is an excellent agreement
except in 3D at high frequency. It is not clear what is the origin of this discrepancy.

In the scaling approach [2], a scaling function for B (the complex dielectric constant of the
metal-insulator system) has been proposed

In (1) 80 is the dielectric constant of the insulator, 7o, the conductivity of the metal and p is the
fraction of the metal. t and s are the well known conductivity exponent (p &#x3E; Pc) and dielectric
exponent (p  ~c) The scaling function F has the following asymptotic forms. If cc~EO/~o C
I p - Pc It+8 (the low frequency limit) F is given by

If now O)F ,O/a2 &#x3E;&#x3E; I P - Pc It+s, it was proposed that
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From these forms of F, it is possible to see that in the limit 6) -~ 0, 8l (the real part of 8) diverges
for ~ -~ with the exponent s, above and below Pc and that in the high frequency limit

(E2 is the imaginary part of 8), independent of p. It is clear that (4) can be valid only in some
interval of frequency, since for co very large E1 goes to a constant value. This defines a frequency
limit Woo for the validity of (4). Between the two limits o ~ a~p (wp = l1oj80 I P - Pc I t+$) and
o ~&#x3E; Op exists an interval of frequency, which encloses the relaxation frequency coR of the system.
Below pc, the free charges of the metal relax in order to make the field null in the metal. o~ is
also the frequency maximum of E2 (co) . Since at Pc, E2 (cc~) diverges for Co --+ 0, it is clear that cc~
goes to zero for p -+ Pc. In the scaling theory there is only one time scale (r ~ cop ’) and it is
expected that o~ goes to zero like I p - Pc It+s.
The experimental system is made of balls of glass and iron, with a diameter of 1.2-1.5 mm.

For the size of the sample and their preparation, we used the results of Powell [4] and Ottavi
et al. [5]. The distance between the electrodes and their size are taken at least 30 times the dia-
meter of the balls. In 3D the measuring cell is a brass cylinder, which can contain 10s balls approxi-
mately. In 2D, we took 8 identical samples, mounted in parallel. Each of them is made of two
concentric electrodes with a layer of mixture (height of 1.5 time the ball diameter) between them.
Each layer is supported by a sheet of plexiglass. -

We performed measurements from 230 Hz to 2 x 107 Hz by means of an automatic bridge
(General Radio LC 1688) and from 5 x 104 to 107 Hz using a Q meter of Boonton. Before the
measurements, the balls were dried to eliminate the humidity, which gives a spurious conduc-
tivity. All the results presented in this Letter are taken below Pc. Above p~, the measurements
are difficult, because the large conductivity and also because we observed instabilities. Some
results in 3D have already been published [6].

In figures 1 to 4, we show the variations of 8l and 82 as functions of cv for some values of p,
in 2D and in 3D. For the 2D measurements, 82 was determined by two methods. First, directly
from the measurement of the sample impedance, but the results are scattered. Since the scatter
in 8 1 is not very important, we calculated 62(0) from 61(0) through the Kramer-Kronig relation.
At the same time, we made automatically the correction of E2 from the conductivity of the glass.

Fig. 1. - E1 versus the frequency for 3D samples.
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Fig. 2. - 82 versus the frequency for 3D samples.

Fig. 3. - E1 versus the frequency for 2D samples.

Fig. 4. - 82 versus the frequency for 2D samples. The lines are calculated from the values of E1(a~) using
the Kramer-Kronig relation. The points are from the direct measurement of 82. Remark the large scatter
of the points. At low frequency the points are not near the line, because of the residual resistivity of the
glass.
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The threshold p~ was determined by fitting the values (shown in Fig. 5) of ~i(~ -~ 0) with the
expression 8i(~ -~ 0) ~ ~ p - p~ I S. In 3D, we find s = 0.76 ± 0.02 and p~ - 0.235 and in
2D, s = 1.35 ± 0.05 and p~ - 0.5. The values of s are in excellent agreement with other deter-
mination of this exponent.

Fig. 5. - Divergence of the low frequency limit of 81"

In figure 6, we drew the variation of ÚJR as function of ~ p - p~ I and we determined the expo-
nent ~ ~ ~ I P - Pc IR. We got R (3D) = 2 ± 0.2 and R (2D) = 2.3 ± 0.5. If the value of
R (2D) is consistent with t + s = 2.7, in 3D it seems that R is different from t + s - 2.6 - if
one takes t - 1.9.

Fig. 6. - Relaxation frequency versus p~ - p ~ ; a) in 3D, b) in 2D.
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In order to compare our results with scaling we proceeded in the following way. From (1) it
is easy to see that E 1 and G2 can be expressed as

where To = 80/U. Thus we plotted the quantities Ek ~ ~ 2013 ~ ~ as a function of fll p - Pc It+8
( f = cv/2 n). In 2D, we used the equality t = s = 1.35 and in 3D we tried three values of t = 1.6,
1.8 and 2. The results are displayed in figures 7-10 and we have some surprise. In 2D, all the
points correspondent to different values of I p - Pc I are all on the same line for 1; 1 as well for 82.
It is a perfect verification of the scaling function (1). At low frequency the slope for E 1 is 1 and
for E2 is 2, in accordance with (2). However, we do not reach the region for which F is given
by (3), since the slopes are always larger than t/(t + s) = 1/2. Instead of a cross-over from (2)
to (3), we have a very large intermediate region (five orders of magnitude in y/~ 2013 ~ It+8 !).

Fig. 7. - Scaling for 81 in 3D.

Fig. 8. - Scaling for 82 in 3D.
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Fig. 9. - Scaling for 61 in 2D.

Fig. 10. - Scaling for 82 in 2D.

It is possible to approximate the scaling functions Bk by the following expression

with ak varying from 2 to 1 /2 for 82 and from 1 to 1 /2 for c 1 - But a 1 = a2 for x = ~/? 2013 ~ It+s
~ 10’. In these regions, F is also given by F(z) ~ z"~. Considering that the maximum of 82
occurs when (X2(fll P - Pc It+S) = 1, we see that our results are in agreement with R (2D) = t + s.

In 3D, we present the results for t = 1.8, since this value gives the best result for sl. However,
for E2 none of the values of t gives the points to be aligned on the same line. Only at low fre-
quency the points are aligned but for increasing the quantity ~7!~ 2013 pc It+s, we have different
lines for different p - /?c* We conclude : a) the scaling theory is verified only at low frequency
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(the slope for 8l is one and two for 82) ; b) at higher frequency there is a deviation from the scaling
theory, which is manifested in 82. This explains why the exponent R is different from t + s.

In conclusion, two rernarks : 1) recently, Gefen et al. [7] suggested that the anomalous diffu-
sion in percolative systems may be of importance for the understanding of the AC conduction.
Clearly, in 2D there is no place for such a suggestion, since this gives different behaviour from
that predicted by the scaling theory. But the discrepancy in 3D could be the result of neglecting
the anomalous diffusion. 2) We did not reach the region for which (4) is valid. But it is not sure
that it is possible to reach it. If cop &#x3E; Woo the region where 81 is constant is reached first and (4)
is never observed. This suggests that the best way of verifying scaling is to proceed as in this
Letter and not considering the curves E 1 (cc~) or 82 (co) at different values of p, as made by Laibowitz
and Gefen [8].

References

[1] DUBROV, V. E., LEVINSHTEIN, M. E. and SHUR, M., Sov. Phys. J.E.T.P. 43 (1976) 1050.
[2] EFROS, E. L. and SHKLOVSKII, B. I., Phys. Status Solidi (b) 76 (1976) 475.

BERGMAN, D. J. and IMRY, Y., Phys. Rev. Lett. 39 (1977) 1222.
WEBMAN, I., JORTNER, J. and COHEN, M. H., Phys. Rev. B 16 (1977) 2593.
STROUD, D. and BERGMAN, D. J., Phys. Rev. B 25 (1982) 2067.

[3] WILKINSON, D., LANGER, J. S. and SEN, P. N., Phys. Rev. B 28 (1983) 1081.
[4] POWELL, M. J., Phys. Rev. B 20 (1979) 4194.
[5] OTTAVI, H., CLERC, J., GIRAUD, G., ROUSSENCQ, J., GUYON, E. and MITESCU, C. D., J. Phys. C 11

(1978) 1311.
[6] BENGUIGUI, L., to be published.
[7] GEFEN, Y., AHARONY, A. and ALEXANDER, A., Phys. Rev. Lett. 50 (1983) 77.
[8] LAIBOWITZ, R. B. and GEFEN, Y., Phys. Rev. Lett. 53 (1984) 380.


