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Résumé. 2014 La notion de degré d’ultramétricité D d’un espace métrique donné est introduite à partir
de l’ultramétrique sous-dominante. On décrit une procédure simple et efficace pour le calcul de D.
On montre que D fournit une mesure quantitative simple de la déviation par rapport à l’ultramétricité
exacte. Cette notion est illustrée pour des exemples explicites et nous suggérons son intérêt dans les
modèles de mécanique statistique ainsi que les problèmes d’optimisation combinatoire.

Abstract. 2014 Using the notion of the subdominant ultrametric, the degree of ultrametricity D of a
given metric space (e.g. phase space) is introduced. A simple and efficient method for the calculation
of D is outlined. D is shown to provide a simple quantitative measure of the deviation from exact
ultrametricity. Explicit examples are used to illustrate this notion which is argued to be of some
interest in statistical-mechanical models and combinatorial optimization problems.

Tome 46 ?20 15 OCTOBRE 1985

LE JOURNAL DE PHYSIQUE - LETTRES

J. Physique Lett. 46 (1985) L-945-L-952 150CTOBRE 1985,

Classification

Physics Abstracts
02.70 - 05.20 - 05.50

1. Introduction.

During the past few years, a considerable amount of work has been done in the study of spin glass
models. In particular, it has been suggested [ 1 ] that configuration space of pure states is endowed
with a non-trivial ultrametric structure [2]. This suggestion has been checked numerically by
various authors [3] for different spin glass models. The same kind of configuration space analysis
has also been carried out for some combinatorial optimization problems [4]. In both cases, the
direct method of the statistics of triangles has been used in order to check the ultrametricity of
configuration spaces. In finite spin models for instance, a finite set of representative configurations
is used to perform such an analysis usually. A further step in that direction would be a quanti-
tative measure of the degree of ultrametricity of a given configuration space. The control of
finite size effects is just an example of a practical use of such notion. Actually, the ultrametric
inequality [5] is so stringent (all triangles are either isosceles with a small base or equilateral)
that, the modification of one spin configuration only may result in the loss of this property.
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This may occur for instance in spin models because of thermal fluctuations which lead to fluc-
tuating distances. Whereas at zero temperature the search for ultrametricity in the whole set
of ground states is actually altered by finite size effects.

In this paper, we present a new method for the measurement of the degree of ultrametricity of
a given configuration space. This method is a very general one and can be used in various contexts.
The basic ingredient is the notion of the subdominant ultrametric. This concept, widely used in
Taxonomy [6] is recalled in the next section. In order to be self-contained, the main properties
of subdominant ultrametrics will be summarized in that section. A simple and efficient method
for the calculation of the degree of ultrametricity, for a given metric space, is outlined Illustrative
examples are the object of the remaining part of the paper.

2. The subdominant ultrametric.

First we define the problem and recall some basic results. Let us consider a finite metric space
(Q, d), where the distance between x E 0 and y E 0 is denoted by d(x, y). In order to measure the
degree of ultrametricity of (Q, d) one asks for an ultrametric denoted (UM hereafter) d’, defined
on Q such as d’ is the closest UM to d. This naturally defines an optimization problem on the set
U of ultrametrics defined on ~2. The pertinent formulation of such a problem suffers actually
from two intrinsic difficulties. The first one is the choice of the measure of proximity of two metrics
d and d’ on ~2. The second one is the problem of unicity of d’. An elegant and simple solution,
but still a partial one, is provided by the notion of the subdominant ultrametric.

Formally, the subdominant UM associated with d can be defined as follows. Note first that the
whole set of metrics, defined on ~2, can actually be ordered in a natural way, as :

Consider now the set U~ = {f e U I d’  d) of the ultrametrics on f2 which are smaller
than d. The maximal element d of U ‘ exists and can be shown to be unique [6]. The ultrame-
tric d so defined is called the subdominant UM associated with d. Note that the restriction
d’  d in the search for d  is a very important condition, insuring the unicity of~.In this respect,
it is important to notice that the minimal element of U = { d’ E U ~ ~ d} is not uniquely
defined Before describing a simple method for the construction oft, let us mention two impor-
tant properties of ~.

i) Optimality. - Assume that the proximity A of two metrics d and d’ is measured by the
Minkowski distance :

or

Then, among all the elements of U~, ~ is the only ultrametric for which JooM d’) and more
generally A(X(d, d’) assume their minimal values [7].

ii) Stability. - If d is transformed into M, (l &#x3E; 0), i.e. : d(x, y) --+ Ad(x, y), x ~ 0, y E 0, then
Àd  is the subdominant ultrametric associated with Àd. More generally, this stability property
remains true when d is transformed into lp(d) where lp denotes a positive non-decreasing function
such that lp(a + b)  lp(a) + ~p(b), a &#x3E; 0, b &#x3E; 0.
Given the metric d on 0, there are different methods [8] for the construction of d ‘. In what

follows, we shall describe a simple procedure giving d  in a very transparent way : the minimal
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spanning tree construction method. We shall outline briefly the main step of this construction
using a graph theoretic language. To a given metric space (Q, d) corresponds a simple, undirected
graph whose vertices are the elements of S. A length d(x, y) is assigned to each edge (x, y). The
basic step for obtaining d ‘ is the construction of a minimal spanning tree (MST) on the connected
graph structure so obtained. Recall [9] that MST refers to a tree A, having the same vertices as G,
but of minimal total length. Note that A may not be uniquely defined and more than one MST
can be constructed on G. However, despite this possible non unicity of A, d ‘ as obtained below,
is unique and does not depend on the particular choice of A. Having a MST on ~2, the distance
~(jc, y) between two elements x and y in 0 is given by :

where (Wl = x, W2), (W2, W3), ..., (wn_ 1, ~n = y) are the n - 1 successive edges of the unique
chain between x and y on the tree. This defines precisely the subdominant ultrametric ~.
A very simple procedure for constructing a MST on ~2 is provided by Kruskal’s algorithm [9]

which can be summarized as follows. Start with A = 0 (the empty set) and order the set of dis-
tances d(w~, Wj) of Q in increasing order. Each distance d(w,, Wj) is associated with an edge (Wb Wj)
on the graph of Q. Put in A the first edge of the list Next edges in the list are then added successi-
vely to A, such as to avoid the formation of cycles with edges already present in A. This procedure
will stop after I Q I - 1 steps, giving a MST on Q and then d ‘. Schematic examples are shown
in figures 1 and 2.

Fig. 1. - A schematic example of Q = { 1, 2, 3, 4, 5, 6 } showing a minimal spanning tree (MST), repre-
sented by double lines, used in the construction of the subdominant ultrametric ~. For instance, ~(1, 2) =
Max { d(1,5), d(5,6), d(6,2) }, d ‘(2,3) = Max { d(2,6), d(6,3) }.

Fig. 2. - Example of a metric space (Q, d)’ 0 = { x, y, z, t } with the associated hierarchy defined by d ‘.
Double lines denote the edges of a MST on ~2. In this example, the degree of ultrametricity 5) of (~2, d) is

given by 5) = 1 _ 14 1given y.v == 1 - 16 = 8 .
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3. Degree of ultrametricity. Example.
How can we define and measure a degree of ultrametricity for a metric space (D, d) which is not
exactly ultrametric ? What is the « minimal distortion » of d in order to become an ultrametric ?
One possible answer to these questions is actually provided by the direct comparison of d with d ’.
A measure of the proximity of d and d ‘ will be given for instance by one of the Minkowski’s
distances Aa defined above. For the sake of simplicity, the following expression for the degree of
ultrametricity 5), or relative distortion, will be used :

Here d is the input metric on 0 and d ‘ is the ultrametric characterizing the output hierarchy on ~2.
In general, D is such that 0 ~ ~D ~ 1, and vanishes if d is initially an ultrametric (d ‘ = d). D
as defined by equation (1) provides actually a quantitative measure of the degree of ultrametricity
of(Q, d). Small values of ~D indicate that d is not very far from being ultrametric, this being realized
through a slight distortion of d. Whereas values of ~ close to one tell us that large distortions of
d are actually needed in order to transform d into an ultrametric.

EXAMPLE. - A simple class of examples, where the construction of a MST is trivial, is provided
by ~2 === { xl, X2,..., xn } where xi denotes n points on the real line. The distance d(xi, xj) = I xi - xj I
is the Euclidean distance. In the particular case, where xi = i (1 ~ i  n), the subdominant
ultrametric d ‘ reduces to the trivial ultrametric ~(~, x~) = 1 : all triangles are equilateral.
For this example, 3) = 1 - 3/(n + 1) ~ 1 at large n, in perfect agreement with the intuitive
expectation : Euclidean spaces are far from being ultrametric spaces. This conclusion is not
modified when D = { j~, X2, ..., xn+ 1 } corresponds to (n + 1) randomly chosen points on the
real line. Indeed, let us denote by X1  X2 ~ ... ~ Xn+l the corresponding ordered sequence
and let Lk = Xk+ 1- Xk, k = 1, 2,..., n, be the length of the interval [Xk, Xk+ lJ. Then a simple

n

calculation leads to the following expression for D : 3) =1- S’IS, where S = L k (n + 1- k) Lk
k=l

n n

and S’ = L L Max (L~ ..., L,) respectively. Assuming that the 1~ s are n independent random
k=1 ’=k

variables having a probability density p(L) = dF/dL, then the average deviation from d to d ‘

takes the following form : ~ S - S’ ~ _ ~ (n + 1 - k) (k  L &#x3E; - ~ck). Here ( L ~ = L dF(L)
k f

and Ilk is the average value of Max (L1, ..., Lk). For non-singular p(L), ( S ~ ~ n3 (n &#x3E; 1) and
 s’ &#x3E; can also be calculated : ( S’ &#x3E; - n 2 for uniform p(L),  s’ &#x3E; ’" n2 In (n) for exponential
p(L), etc. In all these cases, as well as for other variants (e.g. different probability distribution for
{ xi }) of this example, one has 9) - 1 at large n, as anticipated above.

4. Explicit example.

A more suggestive example is given by the set of B-bit words. As a space 0 we shall consider a
subset consisting of M words, randomly taken among the whole set of V --- 2B possible B-bit
words. The elements of 0 can be viewed as spin configurations of a system consisting of B Ising
spins. The set of 2B words represents the vertices of the elementary Euclidean hypercube in B

B

dimensions. The distance (Hamming) between two words will be defined by: d(x, ~) = ~ ! ~ 2013 ~ L
i=1

for x = (xl, X2, ..., XB)’ Y = (Yl, Y2, ..., YB) in S2 ~ x E { 0,1 }, yi E { 0, 1 }. The relevant questions
are the following : How does the degree of ultrametricity 9)B(x) behave as a function of B and the
filling factor x = M/2B ? What is the asymptotic behaviour (B &#x3E; 1) ofD~M ?
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4.1 GENERAL FEATURES. 2013The following two limits are easy to understand. The first one
corresponds to x = 1, ie. M = 2B. In this limit, d ‘ is trivially given by ~(x, y) = 1 and 3)~) =
1 - 2/B. The second limit corresponds to a small number of words : ~ ~ 1. For instance, at
M = 3, the probability distribution of the triangle sides is binomial with an average d(x, y) - B/2
and a variance r ~ B. This leads to ~(~ ~1)~A’~~ showing that, in spaces with large B,
almost all triangles are equilateral and ultrametricity is obtained in a rather natural way.
For a fixed B, the function 3)~) is expected to increase uniformly with x, in order to interpolate

between these two limits. The limiting behaviour at B = oo is a trivial one, with 5).(x) = 0
for x = 0 and ~~(x) = 1 for x :A 0. This is easily understood because, for a given x = M/2B,
9)B(X) must be an increasing function of B. In fact assume that B -+ B + 1 and M is doubled.
The new 2 M words, having each one more bit (the last one) can be obtained from the previous M
ones, by adding 0 or 1 as a new bit This is not so restrictive an assumption, and the new hierarchy
can be deduced from the one previously known. Indeed, one can show :

which implies OB 11 (X) &#x3E; 9)B(x), at least for large M. Here the sums are taken over the set of
couples (i, j) in ~2. 

’

4.2 NUMERICAL STUDY. - The degree ~B(x) has been calculated numerically, in the whole
interval 0  x  1, for different values of B : 8  B  160. Typical results are shown in figures 3
and 4. Instead of a smoothly behaved function, I)B(x) actually exhibits a staircase behaviour.
Already for small B (~ ~ 10), D~M is characterized by jumps between « quantized » values :
1 - 2 k/B (k &#x3E; 1), the stairs are stable (small fluctuations from sample to sample) and the jumps
become sharper and sharper when B increases and appear at very precise values of x. For small

Fig. 3. - Step-like behaviour (heavy solid line) of the degree ofultrametricity ~(~ calculated for 500 sam-
ples of M words (B = 16). The probability distribution Pk for the nearest-neighbour distances is shown
for different values of k. Solid lines represent the calculated distributions whereas points ( +) reproduce the
expression given in the text (Eq. (2)). Arrows indicate the centres of stairs defined by Pk = Pk-1.



L-950 JOURNAL DE PHYSIQUE - LETTRES

Fig. 4. - The same 0,(x) as in figure 3, for B = 14. The lowest part shows the variance a of the same
quantity calculated for 500 samples.

values of x, 9)B(x) becomes smooth, due to finite size effects and for large x, 5)B(x) ends with a
stair corresponding to the expected value ~B(x) = 1 - 2/B. Each jump between two stairs is
actually accompanied with a large increase of the magnitude of sample to sample fluctuations.
This is clearly shown in figure 4, where the calculated variance (1 is shown together with 9)
for B = 14.

This behaviour is actually obtained for larger values of B, where an increasing number of
robust stairs and sharp jumps appear. This picture becomes clearer for increasing B with the
appearance of successive plateaus. These jumps are reminiscent of instability phenomena and,
as will be shown below, the robust stairs can be viewed as coexistence regions.

4.3 GEOMETRICAL PICTURE. 2013 The obtained behaviour of ~B(x) can be understood by keeping
in mind the MST construction method and the sphere coverage problem [10]. Using the repre-
sentation of G as a part of the B-dimensional hypercube, it is useful to consider each element of ~
as the centre of a k-sphere, having a radius equal to an integer k (1  k  B/2). This defines a

k B
neighbour for each point in G, containing wk = ~ ~ ( /~B points of the hypercube. The coverage

’=oB~/

problem of the hypercube is the following. For M randomly chosen centres and a given value of k,
find the probabilitypm for a complete coverage with the Mk-spheres. Clearly, pM  1-(1- w~/2~,
and for large M but small ~/2~, ~M ~ ~ " exp( - x. wk). As will be shown below, the particular
values of x, jc~ ~ 1 /wk are called to play a key role in the behaviour ofD~).
Now consider the probability distribution of the nearest-neighbour distances in ~2, as a function

of M and B. In fact, the structure exhibited by 3)~(x) turns out to be intimately related to that
probability distribution. Given a point in ~2, the probability that all the M - 1 other points are
at a distance strictly larger than k is given by : 1[" ’" (1 - Wk/2~M -1. This expression becomes
accurate when the overlap between the k-spheres is negligible. Therefore, the probability distri-
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bution for the nearest-neighbour distances is given by

This expression is shown in figure 3, for different values of k (k &#x3E; 1). The numerical results, for
different values of k, M and B follow equation (2) and small deviations are obtained for large k
and small x.
The first stair at 1 - 2/B actually corresponds to a close packing configuration, where the

hypercube is covered, with a probability - 1, by I-spheres. Indeed, a simple calculation, giving
the corresponding MST, leads to tD~r) = 1 - 2/B in that region. This stair ends up at a value
of M (see below) given by M/2B ~ 1/~i.i.e.x - 1 /(B + 1).
For each value k &#x3E; 2, Pk assumes its maximal value at x = ak, where almost all nearest-

neighbour distances are equal and the hypercube is almost surely covered by k-spheres. These
values of the filling factor are associated with the unstability of regular hierarchies and give the
positions of the jumps. Indeed, adding (or removing) few points in Q results in a strong modifica-
tion of the hierarchy, making ~B(x) have a sharp jump. Large fluctuations occur in the neighbour-
hood of x = ak, because of this unstability in the hierarchy associated with subdominant ultra-
metrics.
The centres of stairs can also be calculated from the condition : Pk = Pk-1. Indeed, for such

values x~ defined by this condition, the two distances k and k - I are equiprobable and are the
most probable ones. A simple calculation leads to ~ ~ 1 /wk which becomes an exact expression
at 2  k  B/2, ang gives the centres of the first stairs. For these values of x, one can show that
ÐB is given by : 1 - 2 k/B, k &#x3E; 2, in perfect agreement with numerical calculations. A simple
parametrization of 9)B(X) is then given by

Note that, close to xk, adding or removing a few points in 0 does not modify the hierarchy in an
appreciable way, leading to the appearance of robust stairs. The result of equation (3) becomes
more and more accurate at large B and for ~ ~ B/2. For x ~ 1, however, some deviations occur
for various reasons. Beside trivial finite size effects, the most important source of deviations is the
broadening of the probability distribution of nearest-neighbour distances. Indeed, at ~ ~ 1,
different values of these distances (Fig. 3) become equiprobable, and lead to a fluctuation of
distances of order 2~~. Such fluctuations result in an overestimation of 5)B(x) at small x, as
given by equation (3).

5. Conclusion.

Our main conclusions are summarized in the introduction of this paper. The degree of ultrame-
tricity D, as introduced in this paper, may provide some insight in the geometrical structure of
phase spaces. This is clearly shown in the worked example of section 4. It would be useful to
extend such an analysis of the subdominant ultrametric, and the measure of the degree of ultra-
metricity 1) to specific statistical-mechanical models or combinatorial optimization problems.
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