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Résumé. — Nous proposons un modeéle simple permettant de décrire le profil de concentration dans
une solution diluée de chaines semi-flexibles au voisinage d’une paroi solide non-adsorbante. Notre
approche est basée sur 'hypothése d’une concentration de surface non nulle due 4 la rigidité partielle
de la chaine. Le profil de concentration &g (Z) est obtenu A partir de celui des chaines flexibles
@(Z) = @ tanh?(Z/Rg ﬁ) a condition d’introduire une longueur d’extrapolation D propor--
tionnelle 4 la longueur de persistance g de la chaine. Nous montrons que ®(Z) = &, tanh?[(Z +

D)/Rg /2] avec Rg rayon de gyration et &, concentration en volume. Cette formule décrit trés bien
des résultats expérimentaux récents obtenus par la méthode de Fluorescence Induite par Ondes
Evanescentes, sur des solutions de xanthane, un polysaccharide hydrosoluble.

Abstract. — We propose a simple model for the concentration profile induced by a non-adsorbing
solid wall in dilute solutions of semi-flexible chains. Our approach is based on the assumption that
the restriction in the chain local curvature of the chain creates a non-zero surface concentration.
The monomer concentration profile ®¢x(Z) is deduced from the mean-field model for flexible chains,
®L(Z) = &, tanh*(Z/Rg \/5), by introducing an extrapolation distance D proportional to the per-
sistence length g. We show that ®g(Z) = @, tanh?[(Z + D)/Rg+/2] where R is the chain radius
of gyration and @, is the bulk polymer concentration. This analytical expression provides a very
good fit with recent experimental data obtained by the evanescent wave induced fluorescence method
(EWIF) in aqueous xanthan solutions.

Polymer solutions exhibit unique interfacial properties which can be utilized in a host of
potential applications, ranging from biology to the petroleum recovery [1]. However, owing to
the experimental difficulties involved in measurements of monomer concentration profiles in
very shallow interfacial regions, quantitative investigations have not been performed until
recently. In one previous report [2] we have shown how the newly developed evanescent wave
induced fluorescence (EWIF) technique [3] can be used to probe depletion layers at the interface
between a non-adsorbing fused silica wall and dilute xanthan solutions. Xanthan was selected
because it is a semi-flexible polysaccharide chain of high molecular weight (M,, = 2 x 10),
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the properties of which have been accurately measured by Muller et al. [4] under conditions
similar to ours. Because of the large chain persistence length ¢ = 50 nm, the end-to-end dis-
tance ¢ L2 /2 is 420 nm, i.e. one order of magnitude greater than the expected value for a
flexible coil of equivalent mass [5]. This makes the interfacial layer much thicker and the expe-
riments become easier to perform. However the drawback was that the theory for the monomer
concentration profile #(Z) had not yet been worked out for semi-flexible chains. Therefore the
experimental data could only be compared with the models established in the two opposite
cases of fully flexible or fully rigid polymer. The mean-field model of Joanny, Leibler and de
Gennes [6] predicts that, for flexible coils, the depletion layer profile in the semi-dilute regime
should vary as [3]

D:(2) = 8, tanh2<i> )

¢2

where Z is the distance normal to the wall. The F subscript in @ refers to the flexible case. £ is
the bulk correlation length and is a decreasing function of the bulk polymer concentration ®,.
By extension, we expect a similar law to hold in the dilute regime if we replace £ by the chain
radius of gyration Rg. On the other hand, the statistical model of Auvray [7] deals with rigid
rods of length L and negligible width and yields the following profile :

B(Z) = 45,,% <1 —In %) 1)

independent of the bulk polymer concentration, at least in the isotropic phase. The R subscript
in @y refers to the rigid case.

Both models were compared with the experimental results in dilute solutions and only in
the second case could a satisfactory agreement be reached. The best fit was achieved for a rod
length L of 600 + 20 nm, which is actually consistent with the known end-to-end distance of
the xanthan chain. It seems a little risky however to describe a chain of contour length L, =
1 800 nm [4] by an « equivalent rod » of length 600 nm. In other words, since the persistence
length ¢ is 50 nm, there are about 18 statistical units (of Kuhn length 2 g) along the chain back-
bone [8] and the chain must, therefore, retain some flexibility. The use of the rigid rod model
is thus a vast over-simplification. Further evidence for this is the experimentally observed depen-
dence of the mean thickness e of the depletion layer on varying the bulk polymer concentra-
tion [9]. Such a behaviour is quite contrary to the Auvray model which predicts that e should
remain of the order of L, independent of @,, as long as the transition to a nematic liquid crystal
lyotropic solution is not reached. Therefore we also tried a slightly improved approach in which
xanthan was considered as a rod over a distance to the wall equal to twice the persistence length,
and as a flexible coil at all larger distances. The concentration profile given by the rod model
was used for Z < 2 g while a tanh?(Z) profile was assumed for Z > 2 g. This mixed « rigid then
flexible » model quantitatively describes the experimental curves, yielding a best fit value of
80 nm for g and an end-to-end distance of 440 nm. Both of these values appear very reasonable.
Moreover the model has the advantage of readily explaining the dependence of e on @, since e
should be comparable to £, and should thus scale as &, >'*. However it suffers from an unphysical
discontinuity in #(Z) at Z = 2 q and also lacks rigorous theoretical support.

In view of the above situation, we have looked for a more rigorous model which could be
valid for semi-flexible chains near a non-adsorbing wall. Our approach is based on the notion
of a virtual wall, separated from the real interface by an extrapolation distance related to the
actual chain persistence length. We then show that the monomer concentration profile for. semi-
flexible chains can be naturally deduced from the one already known for flexible coils. Finally,
a quantitative comparison is made with the previously published experimental results.
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A semi-flexible chain is characterized by L, > q > a, where L_ is the contour length of the
chain and a is the monomer length. These two inequalities express the fact that the chain is flexible
at large length scales and rigid at small scales. Let us now put such a chain in the vicinity of a
non-adsorbing solid wall and suppose that it contacts the wall at a finite number of points.
The inequality L, > q ensures that the probability of the end monomers to be contact points
is very small. On the other hand, the inequality g > a introduces restrictions on the local curva-
ture of the chain. In particular, around one contact point the radius of curvature cannot exceed
q~ 1. Therefore, if one monomer is near the wall, this implies that g/a monomers are also in its
vicinity. This is shown schematically in figure 1. If we describe the chain through a Kuhn picture
with freely-jointed segments of length equal to twice the persistence length, configuration la
is permitted while configuration 1b is forbidden. Here we suppose that the wall exerts no influence
on the persistence length of the chain. The opposite case has been considered by Odijk in a
somewhat different context of semi-flexible chains trapped in a cylindrical pore of diameter
shorter than the natural persistence length for an unbounded chain [10]. We feel however that
such deformations of the chain backbone conformation require tremendous elastic energies and
that generates a force which in our case of a semi-infinite medium will tend to repel the chain
from the wall.

Once we have realized that the conformation of a semi-flexible chain near a wall should obey
the representation of figure 1a, we can calculate the monomer concentration profile through
a simple argument. Indeed each statistical segment of end-to-end distance 2 g, containing 2 g/a
monomers, can be replaced by a flexible subchain or blob with the same end-to-end distance,
{ L% Y42 = 2 q (it is obvious that the number of monomers contained in such a blob is larger
than 2 g/a, but we can always keep the mass inside one blob constant by renormalizing the mono-
mer weight). The semi-flexible chain of freely-jointed straight segments is thus replaced by an
uncorrelated sequence of L./2 q blobs, each containing an ideal flexible sub-chain. When the
number of blobs is small, it is customary to assume that the chain obeys Gaussian statistics.
Therefore the end-to-end distance of this virtual chain is written as :

(L2 = (L/29)'*2q = (L. 29)'.
Let us recall that for a Kratky-Porod chain of curvilinear length L, and persistence length g,
the end-to-end distance { L% )&{? is written as [8] :

(L2 =[24qL — 24°(1 — e M),

77 77 77 77

a) allowed b) forbidden

Fig. 1. — Semi-flexible chain in the vicinity of a solid, non-adsorbing, wall. The chain is represented as a
freely-jointed chain of segment lengths equal to twice the persistence length g. The conformation shown
in (a) is compatible with the fact that if there is a monomer at the wall, the local chain rigidity implies that
there is 2 g/a such monomers. The conformation shown in (b) is forbidden according to this rule.
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That is to say, for L, > gq,
CL2E ~ (L 29)'

and the two results are equivalent.

As shown in figure 2, we can now replace the actual semi-flexible chain in contact with the
solid by its corresponding flexible chain in contact with a fictive wall located at a distance z= —D
~ — 2 q. Any configuration of the semi-flexible chain which contributes to the depletion layer
with the wall at Z = 0 can be associated in the same manner to a configuration of the virtual
chain with this fictive wall.

Starting from a theoretical profile $x(Z) for a flexible chain, we can deduce the depletion
layer profile &5:(Z) for a semi-flexible chain through the relation

Pse(Z) = P(Z + D). (€)

The concentration profile $x(Z) has been numerically calculated by Casassa [11] for isolated
ideal chains. His result is very close to the afore-mentioned tanh? (Z) profile established in the
semi-dilute regime and for good solvent conditions, and we find in both cases the same Z?
dependence near the wall. The minute differences between the two models would be extremely
hard to detect experimentally. Thus, for sake of simplicity, we choose to describe the flexible
profile through the very simple expression :

®(Z) = P, tanh? (—Z—) @

Rs\/2

which yields, for a semi-flexible chain :

@ (Z) = ®, tanh? (Z + D ) )

Rs\/2

Fig. 2. — Same as figure 1. The dotted lines correspond to the Kuhn representation with freely-jointed
segments of length 2 g. The wiggling solid lines represent the virtual flexible sub-chains associated to each
statistical unit. The circles indicate the spatial extension of each of these blobs (see text for details). This
representation suggests that the semi-flexible and flexible cases are equivalent when the wall position is
shifted by Z = — D.
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For Z = 0, equation (5) predicts a finite monomer concentration at the solid surface
Psp(0) ~ Py(D/Rs)’ - ©

Note the quadratic dependence of @s(0) on D and therefore on the persistence length g.
The profile predicted by equation (5) can be compared to the experimental data previously
obtained on aqueous solutions of xanthan in contact with a fused silica surface [2]. In the EWIF
method, we always measure the ratio between the fluorescence emitted by the polymer solution
of interest and the fluorescence emitted by a reference solution in which there is no depletion
layer. This ratio R, is then plotted as a function of the inverse penetration length A~ for the
optical evanescent wave probing the solution. The origin of distances is taken on the wall. The
data points represented in figure 3 are for a 96 ppm dilute solution. The solid line corresponds
to the best fit with the theoretical profile. The agreement is excellent over the whole range of 4,
namely from oo down to 75 nm. The parameters of the fit are D and R;. We obtain D = 100
+ 10nm and Rg \/5 = 255 + 15 nm. Our extrapolation distance D is in perfect agreement
with the idea that D correspond to the statistical length 2 g since the persistence length g is known
to be 50 + 2 nm [4]. On the other hand, the radius of gyration Rg for xanthan chains can be
calculated from the Kratky-Porod formula using Rg = ¢ L >&/,/6. For chains of molecular
weight 2 x 105, we have L, = 1800 nm. Therefore { L2} = 420 nm and Rg; = 170 nm.
Our experimental value of 180 nm is therefore in excellent agreement with this calculation.
On the whole, it is therefore clear that the present model provides a much more satisfactory
description of the data than any of the previous ones. Another important parameter is the value
of the concentration, Pg(0), right at the wall. Injecting the fitted values for D and Rg into equa-
tion (6) we find Pg(0) ~ 0.14 &, = 14 ppm. This surface concentration is by no means negli-
gible compared to the bulk value of 96 ppm. It would be very interesting to measure this concen-
tration directly by fluorescence resonance energy transfer between donors located on the wall
and acceptors covalently attached to the chains. Contact angle measurements of sessile drops
of the polymer solution should also give the same information. For semi-flexible chains the

surface excess defined as I' = f [#(z) — &,] dz is diminished roughly by D®, relative to
0

that of flexible coils. This is a large effect (39 % in the present case) and the decrease in surface
tension should be easily observable.
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Fig. 3. — Fluorescence intensity ratio R = IZ°'/IF' versus the inverse of the penetration depth (4 ~') of
the evanescent wave. Xanthan polymer concentration = 96 ppm. The solid line corresponds to the best
fit with the present model.
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To conclude, we have presented a conjecture allowing us to calculate the complete depletion
layer profile in the case of semi-flexible chains, which is likely the most general case in polymer
solutions. The functional form is analogous to the one already known for flexible chains, but
with a virtual wall located at Z = — D, where D is an extrapolation distance of the order of
the chain persistence length. This new profile provides an excellent agreement with earlier
experimental results on xanthan solutions. The numerical values obtained from the fit for both
the persistence length and the radius of gyration of the chain correlate well with independent
measurements of the chain properties in dilute bulk solution. The model predicts also a non-
zero monomer concentration right at the wall. A direct measurement of the surface concentra-
tion would provide a definite check of the theory. Such experiments are currently underway
in our laboratory.
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