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Résumé. 2014 Nous discutons de l’effet d’une excitation périodique sur un système qui transite vers le
chaos par intermittence (de type I). Nous montrons que l’amplitude de l’excitation joue le rôle d’une
variable d’echelle et que la longueur moyenne des phases laminaires présente des propriétés d’uni-
versalité au voisinage de la transition. A l’aide des techniques du Groupe de Renormalisation, nous
calculons les exposants critiques correspondant aux différentes classes d’universalité et insistons
sur le fait qu’ils ne dépendent pas de la fréquence d’entraînement. Nous présentons les résultats
d’expérimentations numériques sur des systèmes discrets qui viennent corroborer ces prédictions
théoriques.

Abstract. 2014 The effects of a periodic excitation on the transition to chaos via intermittency are
considered. A renormalization group approach is used to predict the scaling behaviour of the average
length of laminarity with respect to the amplitude of the forcing. The corresponding critical expo-
nents are calculated for the different « universality classes » and found to be independent of the value
of the external frequency. Numerical results on discrete systems are reported which corroborate these
theoretical results.
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The analogy between the transitions to chaos observed in dissipative dynamical systems [1-3]
and critical phenomena [4] has been emphasized by many authors. The use of the renormalization
group techniques [5] provides a unified and elegant description of the universal properties dis-
played by some of these scenarios and in particular by the cascade of period-doubling bifurcations
[6-9] and intermittency [ 10-14]. In the presence of noise, one can carry on the analogy with phase
transitions by considering the Lyapunov characteristic exponent as a « (dis)order » parameter
which exhibits scaling behaviour close to the onset of chaos, and the external fluctuations as a
disordering field on the deterministic dynamics [15-17]. Critical exponents were numerically
computed for both period-doublings [ 18-21 ] and intermittency [ 12-14] and shown to be in remar-
kable agreement with the theoretical predictions obtained through a renormalization group
analysis.
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Cedex, France.
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More recently, such an approach has been used to investigate the effects of a periodic forcing
on the period-doubling cascade [22-24]. The main conclusion of [23, 24] is that the amplitude of
the external excitation again behaves as a scaling variable. The critical exponent which in some
sense characterizes the global instability [ 15-17] of the period-doubling cascade to such a pertur-
bation is found to depend on the ratio of the driving to the external frequencies. Numerical
experiments on discrete systems [23-25] not only corroborate these theoretical results but attest
that there is a range in the driving frequency for which the period-doubling cascade is much more
affected by a periodic forcing than by a random noise.

In this paper we propose to extend such a renormalization group formulation to the transition
to chaos via intermittency in the presence of a periodic excitation. The inverse of the average
length of the laminar episodes (quasiperiodic regime) increases from zero above the onset of
chaos and displays some universal scaling properties with respect to the strength of the external
forcing. We calculate the critical exponents corresponding to the different « universality classes »
defined in the absence of forcing [12-14]. Our main result is that, on the contrary to period-
doublings, these critical exponents do not depend on the value of the external frequency. We
report numerical investigations of 2-Dimensional mappings which bring strong experimental
support to such a result and confirm that intermittency is much less sensitive to a periodic forcing
than to external noise.
While the period-doubling cascade is based on the pitchfork bifurcation, intermittency results

from a tangent (saddle-node) bifurcation. As originally discovered by Pomeau and Manneville
[10], it consists of arbitrarily long episodes of nearly periodic behaviour separated by intermittent
bursts. The simplest models to study such a transition to chaos are the following class of 1-D maps :

f(x) = x + a 1 x IZ + ~ (1)

where accounts for a displacement from tangency (u = 0) and the exponent z determines the
« universality classes ». For small /~ &#x3E; 0, just beyond the onset of chaos, the duration of the laminar
sequences (j~ ~ 0) decreases like ~u - ~Z -1 oz. Such a scaling behaviour comes out quite naturally
from a renormalization group approach as developed in [13, 14]. There exists an exact solution
to the renormalization operation.

namely

with the rescaling factor :

The stability of this fixed point is given by the spectrum of the linear part of the renormalization
operator. The eigenfunction /~(jc) satisfies

The relevant eigenfunction corresponds to a shift from tangency, and is associated with the
eigenvalue :

which lies out of the unit circle. Then the critical exponents can be easily deduced from _~,1. In
the vicinity of the chaotic threshold, the envelop of the Lyapunov characteristic exponent L and
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the inverse of the average length of the laminar episodes  I &#x3E; - ’, behave as a power law :

In order to model the presence of a periodic forcing let us extend (1) to the following 2-D
mappings :

where 0  0  2 n and - 1  x  1 in order to ensure the reinjection process; e characterizes
the strength of the coupling; F(x, 0) and G(x, 0) are 2 n-periodic functions in 0. Such mappings
have been already numerically investigated for particular choices of the functions F(x, 0) and
G(x, 0) [26]. In the limit of sufficiently small values of the parameters ,u and e, the dominant route
to chaos involves a pair annihilation of tori resulting in the onset of intermittency [27]. This raises
the serious problem of bifurcation of invariant tori of differential equations [28, 29] (i.e. invariant
circles of mappings) which is much more difficult to handle than the bifurcation theory of periodic
orbit A mathematical study of the saddle-node bifurcation for invariant circles of mappings is
reported in [29]. Very restrictive hypotheses have to be satisfied for such a bifurcation to occur.
In the case of violation of these hypotheses there is no longer a bifurcation point but a parameter
range of fuzziness where chaotic behaviour may even exist. An interesting quantity to compute
is thus the shift of the intermittency threshold due to the periodic forcing. For the most common
case z = 2, a perturbative estimate of this shift has been performed in [26] ; the critical value M,
was found to behave like ~ ~ oc(!2) e2 (within certain bounds 0 ~ !2 ~ 2 n) in excellent agree-
ment with the results of [30] obtained with a differential equation submitted to a forcing by a
two-valued (+ s, s ~ 1) step function with period T. In the remaining, we will show that such a
scaling law comes out quite naturally when using renormalization-group techniques which allow
a complete treatment of any universality classes.
When adding a phase as in (8) for e = 0, we generate a « circle » of universal maps ~*(~) e~,

each characterized by 0. These maps are fixed points of the renormalization operator which
shifts the phase of the quantity ~2. For small values of e let us look for a perturbation of the form
8~(jc, 0) e’(0 + ag(x,o)) where f(x, 0) (resp. g(x, 8)) is a 2 n periodic in 0, and contains as many harmo-
nics as F(x, 0) (resp. G(x, 0)) does. If F(x, 0) is monochromatic like in the numerical experiments
we will describe in figure 1 to 3, then f(x, 0) can be taken in the general form :

Hence the renormalization operation corresponds to identifying

with

When e is small, on using (2) and (9), we obtain from (10) and (11) a system of two coupled
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equations for p(x) and ~(jc) (at the first order in 8)

Carrying out a calculation of (12) on using series-expansion techniques (as well as polynomial
interpolations for p(x) and ~(x)) and the expression (3) for g*(x), we find

where 0  0  7c as a consequence of the global invariance of the problem under a change in the
signe of 0.
At this point, let us remark that any perturbation of the phase by terms of order 4g(x, 0))

does not enter our renormalization-group analysis since it contributes to order E2 (and not e)
to the equation for the modulus. This means that the universal properties of the transition from
quasiperiodicity to chaos via intermittency should not be affected by the presence of a coupling
G(x, 0) in the equation for the phase in (8). Such a term is responsible for the possible existence
of frequency lockings on the original torus since the winding number is no longer kept fixed to an
irrational value ~2.
From (10) and (11), it is clear that the perturbation we have considered is not an eigenvector

of the linear part DR of the renormalization operator since

Nevertheless, from ergodicity, one can define an « average &#x3E;&#x3E; expansion factor by noticing [17]
that the second term on the right-hand side of (14) does not contribute when one averages over
successive iterations of DR [31 ]. Thus one gets an « average » relevant eigenvalue.

which lies out of the unit circle and is associated with a new (average) unstable direction for the
fixed point g*(x) as introduced by the periodic forcing. Then the order parameter depends on ~
and the amplitude of the external field ~, according to the scaling form [17]

with ~l(y) a universal function, and x and y universal exponents which can be easily computed
from the eigenvalues ~,1 and ~z as given by (6) and (15) respectively :

From (7) ~l(y) fits the asymptotic behaviour A(y) ’" yX/"i for large y.
These strikingly simple expressions of the universal exponents y, X with respect to z deserve an

experimental test In figures 1 and 2 we first report on numerical investigations of the 2-D mapping
(8) in the most common case z = 2. Exploring several irrational values of!2 and different couplings
F(x, 0) and G(x, 0), we have computed  1 ) -1 for various values of s. As shown in figure la with
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Fig. 1. - A logic 2013 logi o plot of  l ~ -1 versus E as computed with the 2-D mappings (8) for an acceptance
gate I x I  10 ‘ 1 and different values of~;z=2.0,c= 1.75, p = 0.0 ; F(x, 8) = cos 8 and (a) G(x, 8) =
0.0, (b) G(x, 8) = x. The continuous lines correspond to the prediction given by (17).

Fig. 2. - Numerical determination of the scaling function A(y) defined in (16). The quantity  I ) - 1 e - x
is plotted against y = ~/ E’’ at each of three values ~ = 10 - 3, 10 - 4, 10 - 5.  I &#x3E; - ’ is calculated through the
iterations of (8) with the same model parameters as in figure la (í2 = 0.5).

F(x, 6)==cos 0 and G(x, 8)=0, the data are well fitted with x =1 as given by (17) (for S=0,
we recover ~* = 1/2 as obtained without periodic forcing). The same good agreement exists when
introducing the coupling G(x, 0) = x as illustrated in figure 1 b which confirms our prediction
that the critical exponents are not affected by the presence of a coupling in the equation for the
phase.
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To check the existence of the scaling function ~l (y) of ( 16), we use the values of X and y obtained
from (17) and (18) to plot  1 &#x3E; - ’ E - X as a function of ~uE -’’. The results are shown in figure 2 for
three different values of the strength of the coupling : a = 10 - 3, 10 - 4, 10 - 5 . The data for those
three different values of e all fall on a universal curve in the vicinity of the chaotic threshold. Let
us emphasize that although this curve depends on ~2, it is always zero for some Yo  0. This allows
us to conclude that the shift of the intermittency threshold due to the periodic forcing scales like
~ ~ ~ = E2, which confirms the analysis in [26, 30]. More generally such a shift is predicted to
scale like :

In figure 3, we present the results of numerical simulations of (8) for different values of z,
namely z = 2, 3, 4. A remarkable agreement with the predictions (17) and (18) is found for the
whole set of universality classes, which attests of the generality of our theoretical analysis.
To conclude, let us notice that from a comparison of A2 as given by (15) with the « average »

relevant eigenvalue ~noise obtained in the presence of a random noise [ 12-14] :

it results that A2  for z &#x3E; 1, which infers that intermittency is much less unstable to the
presence of a periodic forcing than to random fluctuations.
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Fig. 3. - A log, 0 - logl o plot of  1 &#x3E; - 1 versus E as computed with the 2-D mappings (8) for an acceptance
gate I x I  10-1 and different values of z ; F(x,O) = cos 0 and G(x, 0) = 0.0; ~ = 0.0, ~2 = 0.5. Solid
dots : z = 2, a = 1.75; open circles : z = 3, a = 1.5 ; squares : z = 4, a = 1.3. The continuous lines corres-
pond to the predictions given by (17).
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