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Résumé. 2014 Nous examinons numériquement certaines propriétés statistiques de l’équation de
Kuramoto-Sivashinsky-Tsuzuki [1-3], décrivant des systèmes étendus près du point de transition
vers la turbulence, à travers leurs fluctuations de phase. Le modèle ainsi constitué possède certaines
analogies avec la turbulence hydrodynamique [4]. Une loi d’échelle surprenante y a été trouvée pour
les fluctuations temporelles, que l’on peut interpréter comme un phénomène de diffusion anormale de
la phase. Par ailleurs, certains autres résultats inattendus peuvent être interprétés comme des phéno-
mènes d’intermittence.

Abstract 2014 We investigate numerically the statistical properties of the Kuramoto-Sivashinsky-
Tsuzuki model [1-3], which describes the phase fluctuations of extended systems near the transition
to turbulence. This model has some similarities with hydrodynamic turbulence [4]. The time fluc-
tuations exhibit an unexpected scaling corresponding to anomalous diffusion of the phase. Other
results also point to an intermittent behaviour.
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1. Phase turbulence as hydrodynamics with many chaotic degrees of freedom.

Many pattern-forming instabilities can be modelled by the equation :

where subscripts stand for derivatives. It is shown to describe the temporal phase of coupled
chemical oscillators [1]. It also describes the behaviour of other extended pattern forming systems,
such as flame fronts [2] and fluid interfaces [3]. The derivative of the phase satisfies an equation
of hydrodynamical type :

where v = ~x. In this form the model is reminiscent of the Burgers equation which was also
proposed as a model for turbulence. But in contrast with the Burgers equation, (1) displays a
sustained chaotic behaviour [4, 5]. This occurs for large enough values of L and for the boundary
conditions
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The chaos then involves a number of degrees of freedom proportional to L. Rigorous bounds
on this number were given for even periodic solutions [6]. The model (2) somehow mimics hydro-
dynamical turbulence where a chaotic behaviour with a large number of degrees of freedom is
also expected [7]. It would hence be interesting to know whether statistical theories of turbulence
can be applied in this case. A detailed check of such theories is made possible by modem comput-
ing facilities. The analogy with hydrodynamics is relevant because, as pointed out by several
authors, basic ideas about turbulence, like the Kolmogorov theory of energy cascade [8], depend
very little on the accurate form of the Navier-Stokes equations. Actually, the Kolmogorov theory
mainly relies on the existence of a quantity approximately conserved in the equations, the kinetic
energy. In equation (2), the quantity V2 might play a similar role. However, it has been shown that
no inertial range cascade existed for (2) [4, 9]. There seems to be, however, another scaling in the
space spectrum : a range of equipartition for the « energy » v2 has been found numerically [4]
and using the D.I.A. perturbation method [10-11].

Further pursuing the above analogy, we note that v is exactly conserved, just as the actual
momentum in hydrodynamics. « Exact conservation » means that there exists a current J(x, t)
such that

with

Another interesting quantity is

Q can fluctuate only through fluctuations of J :

The conservation law (4), and the related similarity with hydrodynamics motivated the numerical
study of the statistical properties of v, J and Q.

2. Numerical results.

Non linearities favour the existence of a rightward oriented mean current Integrating numeri-
cally equations (2) and (3), we measured  J(0) ) = 0.4. Simple arguments can relate this current
to the time-average  v(x) &#x3E; of the solution (Fig. 1) (here and thereafter, we refer to numerical

Fig. 1. - Mean value of v(x) for L = 200. Oscillations in the middle may be due to imperfect averaging.
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time averages and we assume that they are equivalent to probabilistic averages). It is seen that
the quantity v accumulates near the right boundary and is depleted near the left one. A mean
slope is seen near the centre. When the length L is increased, fluctuations are increasingly uni-
form in space, but the humps near the boundaries remain.

Fluctuations of Q will arise when J departs from its mean value. In hydrodynamic turbulence,
the statistical analysis involves the study of structure functions of the type :

where h is the self-similarity exponent and ~ p are intermittency corrections. For (1), a quantity
of interest is 

The simplest case would be a Brownian motion for Q, with the scaling

To emphasize the connection with hydrodynamic turbulence, we present another heuristic
argument In the following reasonning, we do not pretend to be rigorous, but to show the pos-
sible relationship of our results to existing statistical theories. Simple theories of turbulence
argue that the space averaged velocity Y should obey a Langevin equation of the form :

where vff is an effective viscosity, or turbulent eddy diffusivity, and f is a Markovian white noise.
A ,positive effective viscosity v has also been predicted for equation (1) [11]. Let us examine the
relaxation of fluctuations of Q. From (10) with appropriate boundary conditions one would
get :

where a is the smallest eigenvalue of the diffusion operator on (0, L). Our numerical results show
instead that above very short time increments, of the order of 8, one has the scaling

In all our simulations one has 0.57  Jl  0.62. The scaling (11) is observed over two decades,
after which the increment /~ begins to saturate. The saturation time increases with L. The linear
growth of the exponents n~ was observed up to n = 6. This proportionality of the exponent
to n is very accurately verified (Fig. 2).

These results have been obtained by averaging over very long times and with rather wide
length L. The finite difference scheme of [4] and [5] was used with grid spacing down to 0.1 and
time steps larger or equal to 0.05. No significant variation of Jl was recorded when space and
time resolution was increased Computations were made up to T = 2 x 10~ and for several
lengths between 100 and 500, showing no significant dependency on L. This is reasonable, since
a general property of the model is that most statistical properties reach an asymptotic. regime for
L above 150. In particular, this is the length for which the spectrum of Liapounov exponents
reaches its asymptotic shape [5].

It is already known [9] that statistical properties like the flatness of the m-th time derivative
Fm =  vf’"~ ~~~ VI-12 )2 have different values close to the boundaries and in the bulk. (In the
bulk, F m is constant, up to statistical error). Thus (11) might be related to special characteristics

r3L/4
of flux at the boundaries. To test this, we measured Q 1 (t) f 3L/4 v(x, t) dx, for L = 400. WeL/4
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Fig. 2. - Values of the exponents for the moments /~ (see text).

find again the law ( 11 ). This motivates the conjecture that ( 11 ) does not depend on boundary
conditions. We return to this point below. We also looked at a local quantity like  (v(x, ~+r)2013
v(x, t))2 ~ for some x in (0, L). This quantity, however, does not display the scaling behaviour ( 11 ).
To our knowledge, there is no explanation, at present, of the law ( 11 ). In particular, we found

no similarity argument leading to such a law. We however looked at other statistical properties
that might be related to this scaling. In particular, a slow diffusion might be related to form of
intermittency [12]. In the case n = 2, the scaling law (11) is equivalent to a slope a = 1 + ,u
for the frequency spectrum, to be compared to the value a = 1.75 found in the literature [12].
The corresponding simulations were made for L = 64, a length for which ,u is larger than its
asymptotic value. A statistical study of the quantity Q showed that it is Gaussian-distributed

Fig. 3. - Histogram of values of v(x, t) for x = L/10. The histogram is obtained with increments of v
of 0.01. The histogram of v(9 L/ 10, t) is symmetric to the present one within statistical error.



N° 17 SCALING LAWS IN PHASE TURBULENCE

However when studying time derivatives of Q, one finds that the moments of order of 4 and 6
increase very fast with the derivation order pointing to the intermittent character of the time
fluctuations of Q. Another striking phenomenon is the shape of probability density of v for fixed x
(Fig. 3). It has already been shown that the fluctuations of v are sub-Gaussian [9]. This is reflected
in the rapid damping of P(v) at large values of v. The existence of a delta function-like peak for
v = 0 points to a form of intermittency for v itself. The recurrence of the unstable solution
v(x, t) = 0 might explain this peak, which is not observed when there is only a small number
of degrees of freedom N.

3. Conclusion.

We found an anomalous scaling for the space averaged momentum Q, related to a form of inter-
mittency. An important point, not yet stressed, is that Q is the phase increment through
(0, L) : Q = ~(L) 2013 ~(0). Thus anomalous diffusion of Q is an anomalous diffusion of the phase,
a quantity that can be measured experimentally [ 13]. It might also be relevant to make a remark
on a somehow different problem. (1) can be studied with periodic boundary conditions. The
solutions can then be apparently chaotic for a very long time and then relax suddenly to sta-
tionary solutions. This was observed by several people [14]. It would be interesting to know
whether the time spent by the system to find the stationary solution is related to the anomalous
diffusion of the phase. But for the time being, the statistics of phase chaos remain remarkably
mysterious.
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