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Résumé. 2014 Nous établissons les équations aux dérivées partielles non linéaires qui gouvernent la
stabilité à grande échelle d’une structure cellulaire unidimensionnelle oscillante, apparaissant dans
un système hors équilibre, invariant par translations d’espace et de temps, et par réflexion d’espace.
Nous montrons l’existence d’une instabilité oscillatoire, conduisant à un régime quasipériodique
possédant deux échelles spatiales distinctes.

Abstract. 2014 We present the nonlinear phase equations describing the stability of a time-periodic one-
dimensional spatial pattern, that arises in a system which is invariant by space and time translations
and space reflection symmetry. We show that a large scale oscillatory instability can occur, leading
to a quasiperiodic temporal regime with two different spatial scales.
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A problem of great current interest is the stability of patterns which arise in many nonlinear
dissipative systems driven far from equilibrium by an external forcing homogeneous in time and
space. Time periodic chemical reactions, convection rolls or Taylor cells are well known examples
of such temporal or spatial patterns. Long wavelength modes are very general features of these
dissipative structures, and can be described by the slowly varying temporal or spatial phase of the
periodic pattern. The concept of phase dynamics has been successfully used by several authors in
order to study pattern dynamics in reaction diffusion equations [1, 2], in the Rayleigh-Benard
instability [3] and in the Couette-Taylor instability [4]. In this Letter we study the stability of an
oscillatory spatial pattern that occurs through a supercritical bifurcation. Corresponding situa-
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tions exist for Couette flow between counter-rotating cylinders [5], or for thermal convection in
the presence of a salinity gradient [6]. We show that two phases, (9 and r, associated to the broken
translational invariances in time and space, are necessary to describe the long wavelength insta-
bilities of the oscillatory pattern; we derive nonlinear equations for O and ~, and show that the
oscillatory pattern itself can undergo a bifurcation that leads to a quasiperiodic state.
We consider a one space dimensional physical system described by a set of scalar fields (more

general situations could be considered) : U(x, t) = ( U1 (x, t), U2(x, t), ..., I UN(x, t)) which is
invariant by space reflection x -+ - x, and by constant space and time displacements
~’-~+2~-~+0. The possibility of observing in such a system a standing wave is related
to the existence of modes of finite spatial period, ~(~) = ~ exp ikx, undergoing a bifurcation at
k = kc with an imaginary growth rate ico, through variation of an external constraint /~. Let

be the growth rate of the critical modes. The instability occurs at Jl = 0 and for p &#x3E; 0 one expects

a behaviour characterized by rapid space and time scales -,2013 and 2 ~ respectively. One looks forY p p 
c úJ 

I~ Y

U in the form

where ’11 stands for linear and nonlinear corrections which are assumed to be small for p  1,
and A(X, T), B(X, T) are the two slowly varying complex fields necessary to describe the onset
of the instability. In equation (2) we have represented by X and T the slow space and time variables.
The fields A and B describe respectively the amplitudes of waves propagating to the right and to
the left, and obey amplitude equations which can be derived by standard asymptotic methods [7].

where A and B stand for the complex conjugates of A and B. The symmetries of the system
determine in fact the form of these equations [8] since they imply the invariance of equations (3)
under the transformations

and this leads at lowest order to the equations

where we have simplified the coefficients by appropriate scalings, and s = ± 1. We note that

although symmetry arguments allow ( 1 + iq) Ax and ( ± 1 + i(X) Axx, stability requirements
lead to (5). From now we take equations (5) as a model and we assume we are in the supercritical
situation : s = 1 and y &#x3E; - 1. The spatially homogeneous solutions

describe either :
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a) propagating waves corresponding to

or

which are stable with respect to spatially homogeneous perturbations when y &#x3E; 1,

b) standing waves which correspond to

which are stable when - 1  y  1. We will consider this last situation in this Letter [9].
In order to study the stability of this solution with respect to inhomogeneous perturbations it is

useful to remark that equations (5) admit a more general class of solutions

with

The stability of this solution is studied considering the dynamics of an arbitrary perturbation

In the limit of homogeneous perturbations, ie. A and $ independent of X, one find two types of
linear modes. The former associated with the real parts of ~ and 93 are stable, at least for p and q
sufficiently small, and correspond to amplitude perturbations. The latter, which are marginal,
correspond to phase perturbations and are associated to the imaginary parts 0 and 4/ of A and 93.
The elimination of the amplitude modes leads to the phase equations which are in all generality
of the form

where the coefficients are functions of p and q. Equations (12) have the exact solutions
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with

which can be interpreted in the limit r -+ 0, s -+ 0 as modifications of the wavenumbers of the
initial solutions : p -+ p + ~/6~ ~ ~ ~ + ~6~ Thus we have

In order to compute the coefficients (a 1, ~ 6~ b i , g, h, 1, g’, h’, l’) we expand the left hand side
of (15) in r and s and identify the terms in r, s, r2, rs and S2. In the case p = q = 0, i.e. when
one considers the homogeneous solution (8), the phase equations become

with

Equations (16) are invariant by X -+ - X, 4&#x3E; -+ t/J, t/J -+ 4&#x3E;, which reflects the space reflection
invariance of the initial system which is not broken by the choice of the homogeneous solution (8).
The stability of this solution is studied considering first the linear version of ( 16). The eigenvalues of
the corresponding linear operator are given by

where

A bifurcation occurs when s2 changes sign and it represents the appearance of a low frequency
which modulates the standing waves envelope. This bifurcation occurs at zero spatial wavenumber
if the coefficient s4 of k4 in (18) is positive. In fact S2 and s4 can vanish simultaneously [10]. This
defines a codimension-two surface in parameter space in the vicinity of which the bifurcation can
occur first either at zero or finite spatial frequency.

It is immediate to interpret the phases 4&#x3E; and’" in terms of the spatial and temporal phases,
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1: = ’" ; l/J , e = + ~ of the oscillating pattern. In these new variables equations (16)
become 

- -

These equatiQns describe in all generality the phase stability of a time periodic pattern with
respect to long wavelength perturbations, independently of the bifurcation problem considered in
this Letter. The only hypothesis is the reflection invariance of the considered structure which
implies the invariance of (20) under the transformation

These equations appear naturally when the problem can be reduced to the coupling of scalar and
pseudo-scalar phases [4].

Let us note that the case y &#x3E; 1 corresponds to nonlinear wave propagation, the phase instability
of which has already been studied [2]. The case y = 1 is particular since at the considered order the
amplitude equations admit a one-parameter family of solutions which continuously connects the
purely propagating wave solution (7) to the standing wave solution (8). A new phase X is associated
with this symmetry. Although higher order terms generally break it, it can have observable

consequences in the neighbourhood of the instability onset
Finally in the case - 1  y  1, we have shown that the standing waves can undergo a bifur-

cation leading to a quasiperiodic temporal regime. This oscillatory instability occurs either at
zero spatial frequency, as usual for phase instabilities, or at finite spatial frequency. Detailed
calculations together with an analysis of the various phase equations, and their numerical simu-
lations are in preparation.
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