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Résumé. 2014 On présente une théorie de champ moyen pour les problèmes d’optimisation du type
« Voyageur de Commerce » ou problèmes d’« Appariement ». Cette théorie de champ moyen
s’exprime à l’aide d’un ensemble infini de paramètres d’ordre, qui mesurent l’absence d’auto-moyen-
nage du système et donc son degré de gel. On conjecture que la NP-complexité est associée à la brisure
de symétrie des répliques.

Abstract. 2014 A mean-field theory for optimization problems of the Travelling Salesman type, or of the
Matching type, is presented. It involves an infinite set of order parameters which measure the lack of
self-averageness of the system and its degree of freezing. We further conjecture that NP-completeness
is associated with replica symmetry breaking.
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1. Introduction.

Optimization problems [1] can often be expressed as the search for the minimum of a function of
several variables f (xl, ..., xN), subject to constraints of the type gi(xl, ..., xN) &#x3E; 0, i = 1, ..., m.
These problems can be classified according to the time that the most efficient algorithms require

to find the optimal solution. In the P-(polynomial) class, there exist algorithms for which the
time grows polynomially with the « size » of the problem, whereas, in the NP-(non polynomial)
class, the best known algorithms require a time which grows faster than any power of the size
of the problem (typically exponential or factorial).
To be specific, in the following, we shall make use of two examples. In the P-class, we consider the

Bipartite Matching Problem [1 ] (BMP) : given two sets of N points { ri } and { pi } in a d-dimen-
sional space, and a distance 1, find the best matching between the two sets, i.e. find the permutation

’ 

N

P of { 1, 2,..., N } such that L = L l(ri, PP{i» be minimal. The problem can also be formulated
~ 

i=l N

as a cost problem in terms of a set of N 2 bonds Iii’ and minimizing L = L /~. These problems
i= I
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can be solved in l’&#x3E;(N3) steps [1 ]. The BMP has been introduced as a physical model for line defects
in crystals by Bachas [2]. In the NP-class, we consider the celebrated Travelling Salesman Pro-
blem (TSP) [3] : given N cities, find the shortest path which visits each city once and only once.
It can be formulated either as a Euclidean problem, with N cities at points { ri }, with a distance 1,

N

and the quantity to minimize is the length L = L l(r P{i)’ r P{i + 1 ~), or as a cost problem as for the
i= 1

BMP.
The great difficulty in many optimization problems comes from the existence of a large number

of local minima. This usually causes the algorithms to get trapped in a local minimum, with no
certitude of reaching the absolute minimum.
The same difficulty exists in many physical systems (i.e. metastable states), particularly in Spin

Glasses [4], where the number of metastable states is exponentially large [5]. To circumvent this
difficulty, S. Kirkpatrick et al. [6] have proposed to use the methods of Statistical Mechanics,
i.e. the Metropolis Monte-Carlo algorithm [7]. This procedure, called « simulated annealing »
has been widely used by now [8], and turns out to be extremely efficient.

However, from an analytical point of view, very little has been done, except for the work of
Vannimenus and Mezard [9] which have shown the existence of two regimes in the TSP and have
pointed out some analogy with the spin-glass problem.
The purpose of this paper is to show clearly the analogy of some optimization problems with

Spin Glass problems, and show how a mean-field theory can be derived.

2. The partition function.

In the following of the paper, we shall consider only cost (i.e. bond) problems. The partition func-
tions of the BMP and TSP can be written as :

and

where P E SN denotes any permutation of { 1, 2, ..., N }, and N+1=1.
Let us note :

It is easily seen that :

where the integral runs over Grassman (anticommuting) variables [10]. Indeed, using the basic
rules for Grassman integrals [10] :

one sees on (3) that ZBMP is a sum of all permutations where each site i is occupied exactly once
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by the ’1i ’1i variables and by the çi ~i variables, and there is a weight Uii = e - Plij for each pair
(il 7).

Similarly, for the TSP, we want to construct closed polygons, and we are led to introduce p-
vector spins Si as in the High-Temperature expansion for spin systems :

where

Expanding ~ in powers of K, we see that it consists of a sum of polygons, with a factor ~L~ per
bond, and a factor p per connected part. If we want the polygons to go through the N points,
we must select the terms proportional to K N, and if we want to keep only connected polygons, we
must take the limitp -+ 0, as in polymer theory [11,12]. We have thus :

The extraction of the KN term can also be made by treating K as a chemical potential, and requir-
ing that :

Finally, using the results of reference [12], the p = 0 limit allows us to exponentiate the spin
variables in (4) :

3. Replicas.

As usually in the study of disordered systems, we wish to average the free energy (i.e. log Z) over
the distribution of random variables.

Following the techniques used in the theory of spin-glasses [4], we introduce replicas.
We assume that the Uii are independent random variables, distributed with the same probabi-

lity distribution P(Uij), and we define the cumulants of the distribution P by :

The average of (3) and (5) yields :

and
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Let us note that in (7), the terms where two a’s coincide vanish, due to the anticommutation of the
r¡’s and ç’s variable. From now on, we shall focus on the BMP. Using a Gaussian transform, we
get :

where

4. Mean-field theory.

Mean field is obtained by evaluating (9) by the Saddle-Point method.
The Saddle-Point equations are :

To proceed further, we shall use recent results of the theory of spin-glasses [14]. In the infinite
range model, we know that above the de Almeida-Thouless [15] line, in the (H, T) plane, the sys-
tem is made of a unique phase, and there is no replica symmetry breaking, whereas below, there
is an infinite (e0152N) number of metastable phases, and there is replica symmetry breaking.

It seems plausible that an optimization problem is in the P-class if the number of local minima
grows like a power of N, whereas it is in the NP-class if it grows faster than any power of N.
To proceed further, one must make an ansatz on the structure of the overlaps ~ ~ in (lOa).

By analogy with spin-glasses, we assume : 

i) No symmetry breaking for P-class problems.
ii) An ultrametric « a la Parisi » type of symmetry breaking for NP-problems [ 16].
In the BMP, we thus assume

/j V -
It is easily seen that qk 2 - Z2 r where Z2 is the partition function, given that two pointsz/ B~/

are connected (the bar denotes as usual the average over the bond distribution). If the system were

self-averaging, one would expect that (;;"Y = (20132013 ), and (20132013 ) would be independent of
the particular instance of bonds.
A lack of self-averageness can be measured by :

Thus, a non-vanishing finite Ak signals the absence of self-averageness, i.e. the freezing of the
system [14].
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The analytic continuation at n = 0 is easily done, and the free energy functional reads :

The Saddle-Point method yields :

Denoting the generating function by :

the mean-field equations read :

with

or equivalently :

Let us note that the qk are positive, and they satisfy the sum rule :

and the inequalities :

5. Discussion.

As in reference [9], we discuss the case of a Poisson distribution for the bonds Iij :

where r = d - 1, and d mimicks a dimension for the bond problem. As an illustration, we com-
pute V. We note :
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and thus :

Using the formalism of the previous section, the average of Z is given by :

and the mean field equations read :

There is a critical point given by :

i.e.

in agreement with reference [9], and the extensive part of Z~ is equal to the square of the annealed
partition function :

for any finite temperature T.
ii) if T  T*,
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The interpretation of this is quite simple : denoting by td = NTd, in the high temperature

region, T &#x3E; T*, ..12 ~ 2d 1 t3d ( ~ " 20132013~ ) and there is self-averageness down to temperatures2d T 2d T
-~ 2 d

of order N In the low temperature region...12 = (; r and there is a gradual freezing of theT
system.

If we study the case of Z~, ~ -~ 0, the mean-field equations ( 12) read (in the region ~ ~&#x3E; 1) :

We note

Let us assume that one can neglect all the terms of order k &#x3E; 1 in the exponent of (23), i.e. that the
function ~(x) defined in equation (13) can be approximated by a linear function :

This implies :

and

We see that as long as condition (25) holds, the system is self-averaging. However, when t
becomes smaller than 1, condition (25) cannot hold, since qk increases when the temperature
decreases, and that might be the sign for a phase transition, around f = 1, or for a crossover at a
higher temperature. In any case, as noted by Vannimenus and Mezard [9], there is a change of
regime in the region T = 1.

In the high temperature region, 7~ 1, (i.e. T finite) we obtain :

which is the annealed result
In the low temperature region, the order parameters qk are not small, and there is some freezing

of the system.
We have not been able to find a mean-field solution in the low temperature region, and a nume-

rical study is in preparation.
It might also be that in the low temperature region. the ansatz of no replica symmetry breaking

might be wrong. Regarding the question of replica symmetry breaking, let us note that the most
natural structure would be a Parisi type of structure for qa~, and the shape of q~l...Qk would be
deduced by assigning it a value which depends on the clusters to which o~ ... ak belong. However,
this introduces combinatorial difficulties which have not yet been solved.

Acknowledgments.

The author wishes to thank E. Brezin for useful discussions and C. De Dominicis for his encoura-
gements and help.



L-770 JOURNAL DE PHYSIQUE - LETTRES

References

[1] PAPADIMITRIOU, C. H., STEIGLITZ, K., Combinatorial Optimization (Prentice Hall) 1982.
[2] BACHAS, C. P., Phys. Rev. Lett. 54 (1985) 53.
[3] BEARDWOOD, J., HALTON, J. H., HAMMERSLEY, J. M., Proc. Camb. Philos. Soc. 55 (1959) 299.
[4] EDWARDS, S. F., ANDERSON, P. W., J. Phys. F 5 (1975) 965.
[5] BRAY, A. J. and MOORE, M. A., J. Phys. C 13 (1980) L469.

DE DOMINICIS, C., GABEY, M., GAREL, T., ORLAND, H., J. Physique 41 (1980) 923.
TANAKA, F. and EDWARDS, S. F., J. Phys. F 10 (1980) 2769.

[6] KIRKPATRICK, S., GELATT, C. D., Jr., VECCHI, M. P., Science 220 (1983) 671.
KIRKPATRICK, S., J. Stat. Phys. 74 (1984) 975.

[7] BINDER, K., ed., The Monte Carlo Method in Statistical Physics (Springer, Berlin) 1978.
[8] SIARRY, P., DREYFUS, M., J. Physique Lett. 45 (1984) L-139.

BONOMI, E., LUTTON, J. L., SIAM Rev. 26 (1984) 551.
KIRKPATRICK, S., TOULOUSE, G., to appear in J. Physique.

[9] VANNIMENUS, J., MÉZARD, M., J. Physique Lett. 45 (1984) L-1145.
[10] ITZYKSON, C., ZUBER, J.-B., Quantum Field Theory (McGraw-Hill) 1980, p. 439.
[11] DE GENNES, P. G., Phys. Lett. A 38 (1972) 339.
[12] DAOUD, M., COTTON, J. P., FARNOUX, B., JANNINK, G., SARMA, G., BENOIT, H., DUPLESSIX, R.,

PICOT, C. and DE GENNES, P. G. , Macromolécules 8 (1975) 804.
[13] PARISI, G., Phys. Rev. Lett. 50 (1983) 1946.
[14] MÉZARD, M., PARISI, G., SOURLAS, N., TOULOUSE, G., VIRASORO, M., Phys. Rev. Lett. 52 (1984) 1156

and J. Physique 45 (1984) 843.
[15] DE ALMEIDA, J. R. L., THOULESS, D. J., J. Phys. A 11 (1978) 983.
[16] PARISI, G., Phys. Rev. Lett. 43 (1979) 1754 and J. Phys. A 13 (1980) L115, 1101.


