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Résumé. 2014 Dans la perspective de la réalisation de mémoires associatives à l’aide de réseaux de
neurones, nous étudions la relation entre la structure d’un réseau et ses états attracteurs; nous
montrons que, quel que soit l’ensemble des états que l’on désire mémoriser, il est généralement pos-
sible de calculer tous les paramètres du réseau de façon à assurer la stabilité de ces états. Le forma-
lisme des verres de spins conduit à des résultats particulièrement simples qui permettent, dans certains
cas, d’evaluer analytiquement leur attractivité.

Abstract. 2014 The link between the structure of a neural network and its attractor states is investi-

gated, with a view to designing associative memories based on such networks. It is shown that,
for any preassigned set of states to be memorized, the parameters of the network can be completely
calculated in most cases so as to guaranteee the stability of these states. The spin glass formulation
of the neural network problem leads to particularly simple results which, in some cases, allow an
analytical evaluation of the attractivity of the memorized states.
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1. Introduction.

It is more and more widely admitted that there is a deep connection between the behaviour
of complex systems and that of spin glasses; the conceptual tools that were developed in statistical
physics begin to be applied in various domains of engineering and optimization [1-4]. Large
networks of non-linear elements have been shown to exhibit such intriguing properties as learn-
ing, information storage and retrieval, due mainly to the presence of attractors [5, 6]. Specifically,
networks of highly stylized neurons have been shown to behave as distributed associative
memories [7-9], which might be used in the context of pattern recognition and image processing,
since such highly regular structures can be implemented with a high degree of integration in
VLSI devices and may be fault tolerant.
We shall first recall briefly the definition of the neural network under investigation. We shall

derive, in a compact from, the general stability condition. In a subsequent section, the synthesis
of a network, that is, the determination of its parameters so that a given set of states be stable,
shall be investigated; the spin-glass formulation is shown to be efficient and to lead to simple
results about the stability and the attractivity of the memorized states. The relation between
this approach and the Hopfield model is discussed
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2. Neural net modeL

In the present paper, we use the McCulloch-Pitts model of neurons [10], whereby a neuron is
a two-state, threshold element having several inputs (synaptic junctions) and one output (axon).
The state of a neuron i at time t is represented by a variable which can have the numerical
value H (high) if the neuron is active, and the value L (low) if the neuron is inactive. The values
of H and L which will be considered in this paper are either (H = 1, L = 0) or (H = 1, L = - 1 ).
The value of £; is transmitted to other neurons by the axon. The state of a neuron at time t + T
depends on the states of its inputs at time t in the following way : each synaptic junction being
characterized by its synaptic strength, the neuron performs the sum of the input signals weighted
by the synaptic strengths (i.e., computes the « membrane potential »), and compares it to
a threshold value 0~. If the sum is larger than the threshold, the neuron goes to (or remains in)
the active state; if the sum is smaller than the threshold, the neuron goes to (or remains in) the
inactive state; if the sum is equal to the threshold, the neuron remains in its previous state :

Cij is the strength of the synaptic junction of neuron i receiving information from neuron j,
and n is the number of synaptic junctions of neuron i.
We consider a network of n such neurons, without « sensory inputs » : we assume that the

system has been set into an initial state, and we are interested in the spontaneous evolution of the
network. The neurons reevaluate their membrane potentials synchronously at intervals of
time T. Since any neuron can be connected to any other neuron, the set of synaptic strengths can
be put in the form of a square matrix C, the dimension of which is the number n of neurons.
The state of the neural network is defined by the states of all its neurons : it can be expressed

as a vector ~, the components of which are the states of the neurons. Similarly, a threshold vector 0
can be defined A state of the network is said to be stable if it is invariant iti time.
The collective behaviour of such nonlinear networks has been shown to exhibit associative

properties because their stable states can act as attractors [8]. The system thus embodies an asso-
ciative memory [11,12], which is able to retrieve a full information if given a distorted or incom-
plete version of it : assume that the system has been set into a state which is different from all
stable states; if the latter act as attractors, the system will evolve (according to relations (1))
until it reaches one of them. The stable (memorized) states, if any, depend on the synaptic matrix
and on the thresholds of the neurons. The computation of the synaptic matrix and, possibly,
of the thresholds, can thus be considered as a learning process. However, the link between these
parameters and the stable states is far from being clearly understood The main problem can be
formulated as follows : given a set of states to be memorized, hereinafter referred to as proto-
type states, how should the synaptic matrix and the thresholds be chosen so as to retrieve these
states as efficiently as possible ? Obviously, the minimum requirement is that the prototype
states be stable; very desirable features would be :

i) the fact that prototype states are stable and act as attractors,
ii) the absence of spurious stable states, or, at least, their predictability.
Up to now, the networks, of the type discussed here have been studied essentially by numerical

simulations. By making use of Cooper’s storage prescription [16] for computing the synaptic
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matrix from a given set of prototype states, and by taking all thresholds equal to zero, it was
shown by J. Hopfield [8] that the prototype states are not always stable, and that many other
stable states, different from the prototype ones, arise; these phenomena tend to decrease the
efficiency of information retrieval. An upper limit for the storage capacity was determined One
of the merits of the Hopfield approach is that it establishes a striking similarity between neural
nets and spin glass systems, so that the analytic tools developed for the study of spin glasses
may be used in the investigation of such networks.

Nevertheless, powerful as statistical methods can be, deterministic predictions are necessary
for such practical purposes as, for instance, implementing an associative memory in silicon for
performing such a task as pattern recognition. The present paper is an attempt at finding ana-
lytical results which may give some insight into the behaviour of the network and lead to the
design of associative memories satisfying the minimum requirement for such devices to be usable :
the states to be memorized must be stable.

3. General stability condition.

The stability of a state of the network is expressed as :

for all i = 1, 2, ..., n, where O’i is defined by :

This condition can be expressed in an alternate form : a state described by a vector k is stable
if and only if there exists a diagonal matrix A, with all its elements positive or zero, satisfying
the following relation :

Two problems arise in practise, namely, the analysis and the synthesis of a neural network :

i) the analysis of a network can be expressed as follows : given a network, described by the
numerical values of H and L, the matrix C and the vector 6, what is the behaviour of the network ?
The answer to this question lies in relations (1) and (2a) as far as the evolution and the stability
of the states are concerned Therefore, relation (2b) is not likely to be a very efficient tool for the
analysis of the network;

ii) the synthesis of a network can be expressed as follows : given a set of prototype states { ~,k },
design a network that guarantees the stability of these states; therefore, the following relation :

should be satisfied for all k. The designer can choose freely any suitable set of matrices A k, pro-
vided they are diagonal with all elements positive or zero. Once these matrices are chosen, relation
(3) can be used to compute C and 0 ; the convenience of this relation arises from the fact that it
allows to design an efficient threshold network, with preassigned stable states, using simple
linear algebra. Applications of this formulation will be presented in the next sections.

4. Synthesis of a neural network.

In this section, we show how to synthesize a neural network, Le. to determine the synaptic matrix
and, if necessary, the thresholds, in order to memorize a given set of p prototype states. In a
first part, a general design method is proposed; it can be applied whatever the chosen values
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of H and L. It is shown that a synaptic matrix which guarantees the stability of the prototype
vectors can be readily calculated In a second section, we address the synthesis problem in the
special case where H = 1 and L = - 1 (spin-glass formulation); with a simple choice of the
thresholds, the synaptic matrix can also be easily computed It is shown that Cooper’s storage
prescription guarantees the stability of the prototype states only if the latter are orthogonal.
Finally, the Hopfield model is discussed in view of our results.

4.1 1 GENERAL FORMULATION. - If the p prototype states are denoted by ~,k, the stability condi-
tion (3) for a prototype state is :

where fk = Ak a" +0.
In the most general case, the thresholds and the matrices A k can be chosen freely (the latter

are subjected to the condition of being positive diagonal). If the vectors lk are linearly indepen-
dent, the solution of the above matrix equation is given by [13] :

where F is the matrix whose columns are the vectors (k
A is the matrix whose columns are the vectors ~,k,

and A is the pseudo-inverse of matrix A :

The pseudo-inverse is easily computed recursively, by introducing the prototype vectors sequen-
tially, without matrix inversion [14]. This allows to add a new prototype vector once a synaptic
matrix has been computed without having to compute the whole matrix again : this is similar
to most learning processes.
The meaning of the synaptic matrix C is the following : applying A to a vector k yields the p

coefficients of the orthogonal projection of l in the subspace spanned by the ~’s; therefore,
CTL is a linear combination of the f k’s with the above coefficients. In general this matrix is not
symmetric. This method completely determines a neural network which satisfies the minimum
requirement that the prototype states be stable. It should be noticed that there is no condition
on the { f k } family.
Two cases may arise in practise :
a) Networks in which the thresholds are predetermined Technological considerations may

lead to a particular choice of the thresholds, whereas the matrices A k can still be chosen freely.
C can therefore be computed by relation (4).

b) Networks in which the thresholds are not predetermined The interpretation of matrix C
is made simpler if one chooses A k and 0 so that :

The stability condition (3) thus becomes :

In this case, C is the projection matrix of the n-dimensional state space into the subspace spanned
by the prototype vectors : 

-

The synaptic matrix is symmetric (which is highly questionable from a biological standpoint).
If the prototype vectors are orthonormal one has :
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where I is the identity matrix. Matrix C thus reduces to :

A full discussion of the behaviour of neural networks in this general formulation lies beyond
the scope of this paper. We shall now restrict our study to a case which is of special interest and
is closely related to previous approaches.

4.2 SPIN-GLASS FORMULATION. - In most classical models of neural networks, the values of H
and L are taken as 1 and 0 respectively. However, the striking analogy with spin glasses leads
us to consider directly state vectors ~, = a, for which H = 1 and L = - 1 [15]. In this section, we
show that several simple analytical results can be obtained with such a formulation.
The stability condition for the p prototype state vectors e may be rewritten in the form of

relation (5) if one makes the simple choice :

Therefore, the stability equation reduces to :

If the prototype vectors are linearly independent, the non-trivial solution is given by relation (6) :

where E is the matrix whose columns are the vectors ~.
Two cases of particular interest may be considered : .

a) The prototype vectors are orthogonal : (1~ E) -1 reduces to (1 In) I, so that matrix C is
nothing but the storage prescription advocated by L. Cooper [16] :

b) The prototype states are random vectors the components of which are + 1 or - 1 with
probability 1/2. In the thermodynamic limit this case is similar to the previous one with an addi-
tional special property : the number of 1’s appearing in the prototype vectors is equal to the
number of - l’s. It should be mentioned that this thermodynamic limit case can be simulated
conveniently with a finite number of neurons, provided n is an integer power of 2, if the proto-
type states are a subset of the Walsh functions.

In case (a) or in the thermodynamic limit of case (b), the behaviour of the stable states as attrac-
tors can be studied analytically; the following results, the demonstration of which will be given
in a more detailed paper, can be derived :

i) The key parameter for the behaviour of the network is the Hamming distance H(a, a’)
between states a and Q’ (i.e. the number of neurons whose state should be changed in order to
turn state a into state a’) or, more specifically, the quantity n - 2 H(a, a’) : this is not surprising
since it is equivalent of the overlap between spin glass states [17]. All the prototype states are
equidistant, the distance between them being n/2.

ii) Any prototype state has a radius of attraction which is at least equal to n/2 p : any state
lying within a distance of n/2 p of any prototype state will be attracted by that state. Therefore,
the « attractivity » of a prototype state can be evaluated by the ratio of the minimum number

n/2p
of states that it will attract to the total number of states (1 /2)" Y Cn . 

’
, k=O 

’

Consequently, if p becomes of the order of n/2, the attractivity falls sharply (or, equivalently,
the number of spurious stable states increases).

iii) Similarly, the negative of any prototype state has a radius of attraction n/2 p.
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4.3 RELATION TO THE HOPFIELD MODEL. - We now have the necessary ingredients to discuss
the relation of the present approach to the Hopfield model as described in reference [8]. In this
model, the values of H and L are taken equal to 1 and 0 respectively; therefore, the stability of
the prototype vectors is expressed by relation (3). The state vector is related to a by :

where 1 is a vector the components of which are all equal to 1. Thus, relation (3) can be rewritten
as :

The resolution of this equation is simplified if one notices that it is exactly identical to relation (7)
if one takes :

In this situation, the synthesis of the network that guarantees the stability of the linearly inde-
pendent prototype states consists in :

i) determining the synaptic matrix from the given prototype states, after relation :

ii) determining the thresholds from that matrix :

If the prototype states are orthogonal, the relation defining the synaptic matrix is identical to
Cooper’s storage prescription (8). If, in addition, the prototype vectors have equal numbers
of + 1’s and - 1’s, they are orthogonal to vector 1; therefore, Cl = 0 : after relation (9), all the
thresholds are equal to zero. In the numerical simulations presented in reference [8], J. Hopfield
uses prototype state vectors which have a large number of randomly chosen components;
therefore, the corresponding e vectors are nearly orthogonal and have almost equal numbers
of - 1’s and + 1’s. Thus, Hopfield’s choice of Cooper’s storage prescription and of thresholds
equal to zero is very appropriate [18] with the particular choice of prototype vectors that was
made in reference [8]. However, for real applications in pattern recognition for instance, the
prototype vectors represent an image to be memorized : in general they will not be orthogonal
nor quasi orthogonal and they will not have equal or almost equal numbers of O’s and l’s; there-
fore, their stability is by no means guaranteed if a Hopfield network is used Conversely, in
our approach, the synaptic matrix and the thresholds can be computed very easily so as to memo-
rize faithfully any set of prototype states { ~ }, the only restriction being that they must be linearly
independent 

.

Alternately, one should notice that if, for technical reasons, the thresholds must be taken
equal to zero, the stability of any set of linearly independent prototype states can be guaranteed by
computing C from relation (4) :

As a final remark, a short discussion of the storage capacity may be useful. Two factors deter-
mine this capacity : the stability of the prototype states and their attractivity ; obviously, if a pro-
totype state is not stable, it cannot be recalled exactly; conversely, a prototype state can be stable,
but with little attractivity; therefore, the problem is very complicated In Hopfield’s numerical
experiments, it was shown that for n = 100 and p = 5 the 5 randomly chosen prototype states
were stable; for p = 15, the probability of having no error in recall is approximately 20 %. About
half of the prototype states are unstable. Therefore, the estimated storage capacity of 0. 15 n seems
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to stem both from the instability of the stable states and from the existence of attractive spurious
states. In our approach, the stability of the prototype states is always guaranteed, so that the only
limitation to the storage capacity is the decrease of the attractivity when the number of prototype
states is increased

5. Conclusion. 
, 

-

In the present paper, it has been shown that it is possible to express the stability condition of a
state of a neural network by a matrix relation, which allows to address the problem of the synthe-
sis of a network with simple tools of linear algebra. The resu ts obtained by this method prove
that it is possible to design a neural network when any family of linearly independent prototype
states is given. By a proper choice of the synaptic matrix and, in some cases, of the activity
thresholds, the stability of the prototype states can be insured Moreover, the attractivity of these
states can be evaluated analytically if the latter are orthogonal; this has been achieved by using
the spin-glass formalism, which greatly simplifies the analysis of the network. Therefore, this
approach has proved useful both for the understanding of the phenomena arising in networks
of threshold elements and for the evaluation of potential engineering applications.
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