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Résumé. 2014 Un modèle théorique est proposé pour décrire le comportement non-Newtonien des
suspensions floculées. On suppose que le fluide immobilisé entre les particules formant les floculats
est à l’origine de ce comportement. Une approximation de champ auto-consistant est utilisée pour
estimer le rayon moyen des floculats s’écoulant dans un champ de cisaillement simple, et, par voie
de conséquence, la quantité de fluide immobilisée dans les floculats. Une loi rhéologique est alors
proposée où interviennent quatre paramètres physiques.

Abstract. 2014 A theoretical model is proposed to describe the non-Newtonian behaviour of flocculated
suspensions. This behaviour is supposed to originate from the immobilized fluid between the par-
ticles which forms flocs. A self-consistent field approximation is used to estimate the mean radius
of flowing flocs in a simple shear field, and, as a consequence, the amount of immobilized fluid in
flocs. Then a rheological law is proposed in which four fixed physical parameters are involved.
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1. Introduction.

The bulk rheology of rigid small spheres suspended in Newtonian fluids strongly depends on
the nature of interactions between particles and on the particle size. Brownian motion and inter-
particle forces can equilibrate when the characteristic size of particles is below the micrometer,
while hydrodynamic forces are predominant for macroscopic sizes.
For a large variety of colloidal suspensions (particle in diameter range 1 to 10 J1m) Brownian

motion is weak enough to be neglected, while interparticle interaction remains an important
factor in the bulk rheology.

For a flocculated suspension, as a consequence of coupling between the microstructure of the
suspension and the imposed flow, the characteristic size to be considered is the mean floc size
instead of the individual particle diameter. As a matter of fact, at low shear rates, floc size may
be considered as macroscopic. At high shear rates, even if flocs are reduced to individual par-
ticles, Brownian motion can be neglected when compared to hydrodynamic interactions.

Therefore, in the following, the non-Newtonian behaviour due to Brownian motion [1, 2]
is not taken into account. On the contrary, our attention is focused on the coupling between
microscopic physico-chemical properties and the rheological behaviour of colloidal suspensions.

(*) Laboratoire associe au CNRS, n~ 343.
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As remarked in [3] the study of flocculated suspensions at low shear rates is somewhat difficult
because of the non-equilibrium nature of the structure at rest resulting from the weakness of
Brownian motion.
At rest, when the particle volume fraction is above the percolation transition threshold, aggre-

gates are supposed to form a three-dimensional network. When a finite stress is applied to the
suspension, this structure breaks. Increasing the stress, aggregates are gradually disrupted and
are finally reduced to individual (radius a). With decrease in stress, individual particles build
up aggregates again. In a steady state, a dynamical equilibrium exists between the state of aggre-
gation and the stress applied.

In section 2 we recall some experimental and theoretical results about the steady viscosity
of a suspension of non-Brownian hard spheres as a function of the particle volume fraction 0.

In section 3 we define the floc structure as a composite of randomly packed blobs characterized
by a fractal dimension D. The non-Newtonian behaviour is supposed to be due to trapped fluid
inside each floc. The volume of this trapped fluid is evaluated as a function of the mean particle
coordination number z.

In section 4 a relation is proposed to describe the dynamical equilibrium between the mean
radius of the fractal blobs and the shear stress applied

In the last section, a rheological law is inferred by introducing an effective particle volume
fraction in the rheological law related to a suspension of hard spheres. This effective volume
fraction takes into account the trapped fluid inside the flowing flocs. These results are compared
to experimental data related to flocculated suspensions. The most striking point of this model
is that flocculated suspensions can be described by means of only four main physical parameters :
the particle volume fraction, the energy related to pair interactions, the viscosity of the suspending
fluid and the critical percolation concentration.

2. Rheological law governing the rheology of a suspension of hard spheres.

The flow of a dilute suspension of neutrally buoyant hard spheres exhibits a Newtonian behaviour
due to the reversibility of the Stokes equation governing the flow around individual particle
or doublets. Up to now, only the two first terms of the expansion of the bulk viscosity in terms
of particle volume fraction have been rigorously inferred The 0(o) term was calculated by
Einstein in 1906 [4], and the ~(~2) term was calculated much later by Batchelor [5]

The numerical coefficient of the 0(4)2) term must be replaced by 5.2 when only the hydro-
dynamical contribution with a uniform distribution is considered When the volume fraction 4&#x3E;
is increased beyond the critical percolation concentration 4&#x3E;p’ the presence of an infinite transient
cluster (see for instance [6]) prevents the use of equation (1) for the suspension viscosity.

It has been suggested in [7], as a conjecture, that the percolation transition must play a role
in the variation of viscosity with concentration. As a consequence, in the following, we consider
the suspension as concentrated if 4&#x3E; &#x3E; 4&#x3E;p.
To calculate the apparent shear viscosity of a concentrated suspension of hard spheres in a

Newtonian fluid we use a free cell model [8] which has been widely used for calculating the pro-
perties of concentrated suspensions. A cell consists of a particle surrounded by a shell of fluid
and by the other particles. The apparent overall shear field is defined by :
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The local shear rate y* averaged over the fluid shell volume is :

where ~* is the packing concentration of randomly packed spheres.
The dissipation per unit time and per unit volume expressed by means of the apparent shear

viscosity and the apparent shear rate y must be identical to the dissipation per unit time in the
fluid fraction (viscosity Jlo) :

Hence, the apparent shear viscosity is :

In the following, equation (2) is assumed throughout this paper to be the reference equation
for a concentrated suspension of hard spheres with only hydrodynamic interactions [9].
To take particle interactions into account it has been suggested first in [10] and later in [11,12]

that an effective particle volume fraction be considered instead of the real volume fraction.

3. Some conjectures concerning the structure of a concentrated flocculated suspension.

Recently several theoretical models have been introduced to describe the growth of particle
clusters by aggregation [13,14, 23]. We consider here «the kinetic clustering of clusters » model
generalized to allow for chemical effects. Recent numerical simulations performed for the space
dimension d = 3, reported in [23] lead to the choice D = 2, where D is the fractal (Hausdorff)
dimension of cluster
A characteristic length of every fractal cluster is the radius of gyration RF. This length is defined

as follows :

where the summation covers all the N particle sites of the cluster, and where Ri joins the origin
and the centre of every i particles. The gyration radius RF is simply related to the Hausdorff
dimension D and to the number N of particles per cluster :

The particle density in a fractal structure is a decreasing function of the number N of particles
belonging to the structure when D  3. Therefore, in a concentrated suspension, fractal structure
cannot grow indefinitely.
We will consider now, the suspension being at rest, the formation of a packed structure formed

of fractal aggregate(s) able to fill the space between two planes, whatever the distance between
planes. When the volume fraction 0 is below the critical percolation concentration ~p, this struc-
ture cannot appear [6]. Up to Op, 0 is the volume fraction of isolated particles or of small aggre-
gates. Above the percolation concentration ~p, the suspension is formed of isolated particles
or finite aggregates and of an infinite cluster able to connect every pair of points inside the sus-
pension. To summarize, we can make the crude assumption that for 0 &#x3E; ~p, the partial volume
fraction of isolated particles and small aggregates is øp and that the partial volume fraction of
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the infinite structure is 4&#x3E; - 4&#x3E;p. This infinite structure is supposed to be constructed with fractal
blobs (volume fraction 4&#x3E;F)’ the characteristic dimension of which is RF at rest.

These blobs are packed with the volume fraction 4&#x3E;*. Therefore :

and :

When ø and øp are equal, the fractal characteristic length RF becomes infinite and the volume
fraction ØF tends to zero.
When ø &#x3E; øp, the structure of the infinite cluster is no longer purely fractal but formed of

fractal blobs packed with the volume fraction ~*. Let D be the fractal dimension of blobs :

We pointed out in the preceding section that in order to take particle interactions into account,
it has been suggested that equation (2) can be written :

where l/Jeff is the effective particle volume fraction equal to the sum of the real volume of particles
plus the trapped fluid between particles in contact. When interactions are purely hydrodynamic,
the k factor reduces to the « hydrodynamic factor » ko : it is the ratio of the effective solid volume
to a geometrical volume fraction

We can make the assumption that a certain amount of liquid around the « contact point »
of two spheres and the spheres have no relative velocity. We must emphasize here that in our
model the trapped fluid does not include the trapped liquid which cannot be liberated by shearing.
As a consequence of this statement the elementary particle of our model may be an aggregate
of several solid spheres which are strongly coagulated Another consequence in practice is that
an amount of trapped liquid which is not liberated by shearing in ordinary viscometers can be
liberated by applying a powerful sonification to the suspension.

3.1 1 MEAN VALUE OF THE COORDINATION NUMBER. - Let r be the mean number of contacts for

every sphere belonging to a floc and let pa3 be the trapped fluid per contact. Therefore, the k’
factor can be expressed as a function of the mean coordination number z :

Let zo be the mean value of the coordination parameter in an infinite fractal floc. The coordina-
tion number must be lower than zo in a fractal floc whose radius RF is finite since the particles
at the floc surface must have fewer than zo contacts with their neighbours. On the other hand,
the constancy of zo throughout the fractal structure can be inferred by some arguments analogous
to those used in polymer studies [ 15]. A pair correlation function may be defined as follows :
we choose one particle at random in the fractal structure. Then we determine the number density
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of the other particles at a distance r of the first and we average the result over all possible choice
of the first particle. This function scales like the density inside the fractal floc :

Then, z, = zo everywhere except on the surface. Here and in the following, surfaces are not
defined as fractal surfaces but as classical surfaces corresponding to spherical volume of blobs,
with radius RF.
On the floc surface the coordination number is the fraction aza of the coordination number

inside the floc. Hence :

where N is the number of particles in a fractal blob and AN is the number of particles at the sur-
face

Hence :

when the blob radius RF tends to the particle radius a (that means that there is no permanent
contact between particles) the coordination number must tend to zero

Finally, considering equations (5) and (6) :

Now using equation (4) we can point out that the suspension viscosity becomes infinite when
the effective volume Øeff tends to unity. We state that this occurs when the gyration radius RF
reaches a maximum. Recalling equations (3) and (7) :

From (3) and (8) we can deduce the zo value when the Hausdorff dimension is D ~ 2 :

zo being the highest value of the fractal coordination number z.
From (7) and (9) :
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4. Equilibrium size of flocs in a simple shear flow.

Numerous theoretical and experimental studies have demonstrated that a shear flow enhances
the aggregation process in dilute suspensions until the flocs which are formed in the flow are
large enough to be destroyed by the shear stress which is acting on their surface. Monte Carlo
studies of the coalescence and breakage of aggregates show the effect of shear rate on the aggregate
size distribution [16]. It has been observed that, as the shear rate is increased, the relative fre-
quency of the smaller aggregates increases and that of the larger aggregates decreases corres-
pondingly. These results allow us to make the assumption that the main features of this process
are still applicable for concentrated suspensions. Flocs forming the following bulk suspension
can enlarge until they reach a critical size corresponding to a dynamical equilibrium at a given
shear stress. When a floc appears in the flow with a size above this critical size, it is immediately
disrupted. Therefore, at a given shear stress r, the floc radius must satisfy an equilibrium equation :

We will now consider an elastic floc as in [17]. The energy required to rupture a floc consists
of two parts : ER, the energy required to rupture the links which have been formed between the
particles inside the floc, and ED, the energy needed to stretch (but not break) the elastic links
between particles within the floc as the tension is transmitted from the shear field to the doublet
contact area.

We must emphasize at this point that the energy required to stretch the links between particles
is proportional to the number of links per unit volume. But the number of links in the rupture
area is proportional to the number of links per unit surface. Then, the main contribution to
the energy dissipation may come from stretching bonds within the floc rather than breaking
those between two parts of the floc.
We demonstrated in [18] a relationship between the critical deformation of an elastic sphere

just before rupture, the surface energy r and the sphere radius R :

To describe the rupture process between two surfaces whose areas are proportional to R 2,
the Deryaguin equation [19] can be used :

where FR is the rupture force and F a surface energy. If :

then :

and :

Hence r and TD are proportional :

The surface energy F in the section of rupture SR is defined as follows. Let N~ be the number
of particles in SR :

where N is the total number of particles in the floc (radius R).
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The surface energy is :

where ya2 is the bond energy corresponding to every pair interaction between elementary par-
ticles. We deliberately ignore here the exact nature of the physico-chemical interactions generating
y (Van der Waals, electrostatic, polymer bridging, etc.). Finally, taking into account the fact that
Deryaguin’s equation leads to :

and that the floc radius cannot decrease to zero but tends to the limit R = a when the shear
stress T becomes infinite, we propose as the equilibrium equation :

where A = (1 - K)-~.
To define the shear stress we treat the multifloc interactions via the self-consistent field approxi-

mation. This involves surrounding a spherical unit floc, consisting of interacting rigid particles,
with a continuum having the mechanical properties of the bulk suspension. Introducing in
equation (11) the Hausdorff dimension D ~ 2 :

where we put y = T
a

In an experimental study of flow of dilute coagulated sols [20] the authors found that the
average slope of the log(shear rate) - log(radius) curve is ~ 0.42 and does not appear to depend
in any way on the bond energy.
With a fractal dimension D = 2, equation (11) would give the value 0.5 for the above men-

tioned slope. This slight discrepancy can be explained by a possible crossover from the chemi-
cally limited to the diffusion limited model.

5. Viscosity of a flocculated suspension as a function of the imposed shear rate.

At this stage of our analysis, we are able to express the effective volume fraction as a function
of the shear stress inside the suspension

, ,

According to equations (10) and (11) we can write :
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Introducing the value of the effective volume fraction given by equation (12) in the viscosity
equation (4) we obtain after some simple algebra :

Focusing our attention on the rheological properties of the suspension at low shear rates,
we can calculate the value of the yield shear stress when the shear rate y tends to zero

An alternative manner to write equation (14a) is to express the energy B per bond :

The shear stress dependence on the volume fraction 4&#x3E;, on the energy per bond 8, and on the
particle radius a, which was experimentally determined in [21] for coagulated sols, confirms the
validity of equation (14b).
A simplified expression for equation (13) can be obtained in the limit range r &#x3E; r~ :

_ 

~0(1 - ~)
~~(1"~- .

Equation ( 15) is exactly Casson’s equation [22]. When ~ ~ l/Jp the ratio of the apparent vis-
cosity ,u to Jloo can be expressed as a function of the dimensionless variable f = y/yo, where yo
is related to the yield shear stress ’to by :

0

When viscometric studies are performed in the low f range (and correspondingly for high
bond energy values) the relationship between apparent viscosity and shear rate can be repre-
sented by a power law.

6. Conclusion.

This model proposes a rheological state equation where, for a given fractal structure, four phy-
sical parameters are involved. We consider that this analysis constitutes progress in contrast
with numerous non-Newtonian viscosity equations which use several phenomenological para-
meters. Despite the frequent use of scaling concepts in its elaboration, this rheological law reflects
quite well the behaviour of sheared flocculated suspensions.
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