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Résumé. 2014 Nous étudions les propriétés de fluctuation des valeurs propres du Laplacien à deux
dimensions avec des conditions aux limites de Dirichlet sur un stade. Elles sont consistantes avec
les fluctuations des valeurs propres de matrices aléatoires (GOE). Nous faisons la conjecture que
ceci est vrai en général, pourvu que la frontière soit telle que le mouvement d’une particule libre
réfléchie élastiquement par la frontière (billard) soit un mouvement très chaotique.

Abstract. 2014 We investigate the fluctuation properties of the eigenvalues of the Laplacian in two
dimensions with Dirichlet boundary conditions on a stadium. They are found to be consistent with
the fluctuations of eigenvalues of random matrices (GOE). It is conjectured that this is true for any
boundary such that the motion of a free particle elastically reflected by the boundary is a strongly
chaotic motion.
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The work described in this Letter is a continuation of our investigation started in reference [1]
(hereafter referred as I ; see also [2]). In section 1, we summarized the reasons for believing that the
level fluctuation properties (departures from uniformity) of spectra, as predicted by random
matrix theories, specifically by the Gaussian Orthogonal Ensemble (GOE) [3], are expected to be
very general. We presented results showing that the level fluctuations of the eigenvalues En of the
Laplacian

in two dimensions, with the Dirichlet boundary condition t/ln = 0 on Sinai’s billiard (see Fig. 1),
are consistent with GOE-fluctuations. We remember that Sinai’s billiard (free point particle elas-
tically reflected by the walls) shows classically a strongly chaotic motion (Bernoulli system) and
that in I it has been conjectured that the agreement between GOE fluctuations and level fluctua-
tions of time-reversal invariant quantum systems whose classical analogues are strongly chaotic
is a general property. In contrast, for a system whose classical analogue is integrable, for ins-
tance a circular billiard, i.e., solutions of equation (1) with Dirichlet boundary conditions on the
circle, the spectral fluctuations have been shown to be asymptotically of Poisson type [4]. It
should be noticed that, recently, two cases showing convincingly the transition in the quantum
spectral fluctuations from Poisson to GOE type, when the corresponding classical Hamiltonian

(*) Laboratoire associe au C.N.R.S.
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Fig. 1. - Shapes of the boundaries of different membranes whose spectral fluctuations are discussed in the
text : a) circle; b) Sinai; c) stadium, with the four symmetry classes of the eigenfunctions.

undergoes a transition from the integrable to the chaotic regime, have been studied [5]. In two
dimensions, equation (1) applies not only to the quantum problem of a free particle in a box but
also to the classical problem of the transverse vibrations of membranes of different shapes whose
boundaries are fixed. In three dimensions it applies, with appropriate changes of the boundary
conditions, to the free electromagnetic oscillations in the interior of a cavity.

In the present note we present results for the spectrum of equation (1) in two dimensions with
Dirichlet boundary conditions on the stadium : two semi-circles separated by two straight seg-
ments (see Fig. 1). It is known that a stadium billiard is classically a Bernoulli system [6] and
spectral properties of equation (1) with a stadium boundary have been previously investigated
in the pioneering work of McDonald and Kaufman [7], where, among other questions, the problem
of the correspondence between ray and wave description was properly emphasized (1) (see also
Ref. [9]). The results presented here go beyond those reference [7] in several respects : i) we study
not only the spacing distribution p(x) between nearest-neighbour levels, which is adequate to
study level repulsion (avoidance of clustering of levels) but also other quantities characterizing
level fluctuations (spectral rigidity, for instance); ii) the number of computed eigenvalues is signi-
ficantly larger than in [7], thereby allowing a close comparison with GOE predictions; iii) by
computing all the solutions belonging to the four different symmetry classes of the stadium, the
role of the discrete symmetries can be investigated. Besides treating a different billiard, this work
differs from I in another respect : not only 2-point functions are dealt with, but 3- and 4-point
functions are discussed as well.

(’ ) After this work has been completed, we received the Ph. D. Thesis of McDonald [8], in which the
results of Ref. [7] have been considerably extended.
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We proceed as in I, except that the parameter characterizing the billiard will be kept fixed and
that each different symmetry class, labelled by a, will be treated separately. a takes four different
values corresponding to the even-even, odd-even, odd-odd, even-odd solutions, labelled by
a = + +, - +, - -, + - respectively and one has

The geometrical symmetry of the problem does not introduce any degeneracy in the spectrum.
Once the eigenvalues Ei,a have been determined, we unfold the spectrum by the mapping
Ei,,, ~-4 ~,a through 

’

where Na(E) represents the smoothed part of the staircase function number of levels Na(E) up
to energy E corresponding to the symmetry class a. The effect of equation (3) is to map the spec-
trum { E~ } into a spectrum { E~ } which is on the average uniform and with mean spacing equal
to one. To determine N«(E) we use the Weyl-type formula [10]

where S is the surface of the boundary, C its perimeter, and C a constant containing information on
the geometrical and topological properties of the domain (curvature and comers of the boundary,
connectivity of the surface). Equation (4) applies to the number of eigenvalues up to energy E
of (1) with Dirichlet boundary conditions. To.determine Na(E) we proceed as follows. Let No(E),
N1(E), N _ (E ), N+ (E ) denote the number of eigenvalues up to energy E corresponding to the
complete stadium, to the right (or left) half of the stadium, to the upper (or lower) half of the
stadium and to one quarter of the stadium respectively. One has

For the functions No, N~, N_, N+, equation (4) is valid. By inverting (5) one has the functions Na
in terms of No, N~, N- and N+ and, applying (4) one obtains Nx(E). The leading term (surface
term) of N,,,(E) is just one fourth of the corresponding term of No(E) and independent of a. The
a-dependence of Nx(E) comes only through the perimeter and constant terms in equation (4).
Although (4) is only asymptotically valid, it can be seen that in practice it applies all over the
spectrum, even for small values of E.
To determine the eigenvalues we use essentially the numerical technique proposed in refe-

rence [11] and applied in [7] : by making an integral dipole representation of the wave function the
original differential equation to be solved is transformed into an integral equation. In order to
check the numerical accuracy of the results, we have computed the eigenvalues for the circular
case, for which the solutions are known to be the square of the zeros of the Bessel functions

Jy(X ) of integer order of the first kind. The eigenvalues are determined with a precision of the
order of a few percent of the average spacing. The algorithm may fail in practice when two eigen-
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values are almost degenerate. For instance, for the circular case, around 3 % of the eigenvalues
are missed. This fraction is probably less for the case of the stadium. For the stadium we used a
ratio of straight line segment length over radius length equal to unity and the first 3 200 eigenvalues
were computed. A stretch containing the first 1400 eigenvalues of the circle has been computed
exactly.
We now turn to the results. The following quantities are discussed :
a) the spacing distribution p(x) between adjacent levels;
b) the average over the spectrum d 3(L) Of’j 3(L) .’j 3(L) is defined as follows : take an interval

[8, 6 + L ] ; d 3 (L ) is the least-square deviation of the staircase function N(s) giving the cumulative
density of the spectrum } E~ } from the best straight line fitting it ;

c) the variance E2 (L), the skewness 1’1 (L) and the excess Y2 (L) of the number n(L) of points
contained in an interval [8, 8 + L]. ~ 2, y, and }’2 are given in terms of the spectral averages of the
square, the cube and the fourth power of (n(L) - L).

For the sake of comparison, corresponding values for Poisson and GOE spectra are also given
[12]. E 2 and d 3 are given in terms of integrals of the 2-level cluster function whereas y 1 and 1’2
are given in terms of integrals of the (2 + 3)- and (2 + 3 + 4)-level cluster functions. For Poisson
spectra, E 2 and d 3 increase linearly with L, whereas for GOE one has a logarithmic increase
(spectrum rigidity).
From the results obtained it can be seen that, in the case of the stadium, the level fluctuations

corresponding to each different symmetry class are, to within statistical errors, the same and
consistent with GOE predictions. This is illustrated on figure 2b, where d3(L) is given for the
four different symmetry classes separately. In order to improve the statistical significance of the
results, we may consider, instead of four separate stretches of ~ 800 levels, a single stretch obtained
by the succession of the four stretches (levels belonging to different symmetries are not mixed).

Fig. 2. - Results of level fluctuations for the eigenvalues of the stadium : (a) nearest-neighbour spacing
distribution; (b) d 3 as a function of L. In (b) results are obtained from the stretch of levels going from the
50th to 800th level for each symmetry class. In (a), to improve the statistics, all spacings corresponding to
each symmetry are included. GOE and Poisson predictions are drawn for comparison.
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Results presented in figure 2a for the spacing distribution and in figure 3 for ~ 2, y 1 and y2 are
obtained in this way and, again, are consistent with GOE predictions. If one considers a stretch
of the first 3 200 levels, ordered with increasing value of the energy and irrespective of the sym-
metry class, one obtains the results displayed in figure 4. They agree with the predictions obtained
by superposing four uncorrelated GOE spectra each having the same mean spacing. When
superposing n uncorrelated sequences of n GOE spectra with the same mean spacing one has,
for instance,

These results are in perfect analogy with what happens when analysing resonances of the com-
pound nucleus :, GOE predictions apply to sequences of levels having the same quantum numbers
but when states belonging, for instance, to different parities are not separated, one must consider
superpositions of uncorrelated GOE spectra. For comparison, results corresponding to an inte-
grable case, the case of a circular boundary, are also presented. To avoid degeneracies, we consider
in fact the semi-circular membrane. Results are shown on figures 5 and 3 and are close to Poisson-
fluctuations. We interpret the departures from Poisson results as an indication that the asymptotic
regime has not yet been attained. That one expects a Poisson spectrum can be understood from
the following heuristic argument. One knows that the result of randomly superposing highly

Fig. 3. - Variance L2, skewness )’1 and excess y2 of the number statistic n(L) as a function of L, for the
semi-circular and stadium membranes. For the semi-circular membrane, the stretch going from the 200th
to the 1 400th level has been used For the stadium, see caption of figure 2a.
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Fig. 4. - Same as in figure 2 using the stretch going from the 200th to the 3 200th eigenvalue, without
separating according to the symmetry class. Dashed lines for the A3-value of Poisson indicate the effect
of the finiteness of the sample (one standard deviation). Dot lines indicate results corresponding to the
superposition of four uncorrelated GOE spectra.

Fig. 5. - Same as in figure 2 for the eigenvalues of the semi-circular membrane. The stretch going from the
200th to the 1 400th eigenvalue has been used. Dashed lines for the J 3-value ofPoisson indicate the effect
of the finiteness of the sample.
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correlated spectra is to produce a Poisson spectrum. Consider, for instance, the effect of super-
posing at random n picket fences (spectra of equally spaced levels). On the interval [0,1] one
takes n points xi (i = 1, 2,..., n) at random uniformly distributed and one constructs an infinite
spectrum by attaching to each point xi a picket fence of unit spacing. The resulting spectrum,
in the limit of large n, is a Poisson spectrum. In the case of the semi-circular membrane we are in
a similar situation. The eigenfrequencies kn (En = kn ) are given by the zeros of the Bessel functions
Jv(x) (v = 1, 2,...). Let jv,S(s = 1, 2, ...) denote the s-th zero of Jv(x). The jy,s’s(s = 1, 2, ...) extend
from ~ v to infinity with a density 

and are practically fluctuation-free. Consider now an interval at high frequency containing N
levels kn (n = 1, 2, ..., N ) ordered with increasing value of kn. The successive values of kn corres-
pond to around N different (and unordered) values of v. The point now is that zeros of Jv and
Jv, with v not too close to v’ are likely to be uncorrelated. Consider, for instance, a stretch of the
eigenfrequencies near the 1 400th frequency. The labelling (v, s) of successive eigenfrequencies
is as follows : (82,4), (70,7), (37,18), (45,15), (5,32), (32,20), (3,33), (1,34), (18,26), (60,10). We are
therefore in a similar situation as when superposing picket fences, which leads to a Poisson
spectrum.

In summary, the results presented here reinforce the conjecture that the spectrum of the
Laplacian with Dirichlet (or Neumann) boundary conditions on an irregular boundary has
asymptotically (high energy) GOE-fluctuations. By irregular we mean such that the corres-
ponding classical billiard is a Bernoulli system (possibly that ergodicity is sufficient). To attack
the conjecture theoretically (for attemps in this direction, see [13]) it may be convenient, instead
of putting the complication in the shape of the boundary, to put it in the metric of the space
and consider free motion without walls. We remind that the analogy between dispersing billiards
and geodesic flows in spaces of negative curvature can be explained intuitively [14] and that the
geodesic flow on a surface of negative curvature is a Bernoulli system [15]. At any rate, the follow-
ing picture seems to emerge. At a « macroscopic scale », we have universality properties of the
spectrum of the Laplacian in a box : the average number of eigenvalues up to a given energy
depends only on macroscopic features of the boundary, such as surface, perimeter. At the other
extreme, at a « microscopic scale » (scale provided by the mean spacing), fluctuations also show
universality patterns : Poisson-pattem for regular (integrable) systems, GOE-pattem for strongly
chaotic systems. One expects that these results also apply in more than two dimensions, for
instance to the electromagnetic oscillations of a cavity [16]. Measurements of a large number
of eigenmodes of microwave cavities of irregular shapes, although difficult, seem to be feasible
and are called for.
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