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Résumé. 2014 Une goutte de polymère fondu s’étale, sur certaines surfaces, en montrant un « pied »
macroscopique, qui précède le corps de la goutte. Nous expliquons ce « pied » par un effet de glisse-
ment du polymère sur la surface solide : l’existence d’une grande longueur d’extrapolation b, pour
le champ de vitesses, dans de tels cas, a déjà été prévue par l’un d’entre nous. Nous calculons la forme
détaillée du pied (cote 03B6 fonction de la distance au bord x : 03B6(x) ~ x3/2) et montrons que la hauteur
du pied est comparable à la longueur d’extrapolation b. Celle-ci peut être très grande (&#x3E; 100 microns)
pour des polymères enchevêtrés sur une surface lisse. Par contre, si la surface est rugueuse, ou si
certaines chaînes sont ancrées au solide, la longueur b redevient très petite : ceci explique que l’exis-
tence du « pied » soit très sensible à l’état de la surface solide.

Abstract. 2014 Depending upon the nature of the polymer-substrate system, it has been observed that
the shape of a spreading polymer droplet on a flat surface could be either a spherical cap 2014 as for
low viscosity liquids 2014 or a spherical cap with a projecting macroscopic « foot ». We interpret this
« foot » by an effect of finite slip of the polymer liquid at the surface : the existence of a large extra-
polation length (b) for the velocity field of polymeric liquids near a smooth surface was predicted
long ago by one of us. We calculate the detailed shape of the foot, and show that the foot thickness
is comparable to b ; this length may reach very high values (&#x3E; 100 microns) for entangled polymers.
On the other hand, if the surface is rough, or if some chains are strongly bound to it, b is drastically
reduced : this explains why the existence of the « foot » depends on the precise conditions at the sur-
face.
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1. Introduction.

1.1. - The spreading of low viscosity liquid droplets on clean solid surfaces is now reasonably
well understood.

a) If the liquid wets partially the solid (finite contact angle 0J the droplet relaxes rapidly to
equilibrium.

If RF is the equilibrium radius, the equilibrium time is r - RF/V*, where V* = y/ r~ is the
« spreading velocity » resulting from a balance between surface tensions (y = liquid/vapour
surface tension) and viscous resistance (tl = viscosity of the liquid). For y = 100, ~ = 10 "~
RF = 0.1 (CGS), one expects r = 10- 5 s.

b) The most interesting case corresponds to perfect wetting (fJe = 0), and we shall only consider
this case. The spreading times are then very long.
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i) The macroscopic shape of the droplet is a spherical cap, with an apparent contact angle
0.(t) (Fig. 1 ).

Fig. 1. - Spreading of a low viscosity liquid, assuming complete wetting (equilibrium contact angle ~ =0).
The « spherical cap » is dominated by capillary and viscous’forces, while the precursor film is dominated
by Van der Waals and viscous forces.

By optical observations of spreading oil drops, Tanner [1] finds 0~) ~ t - o. 3 0. Data on the
macroscopic droplet radius by Lelah and Marmur [2] are consistent with Tanner’s law :

They find 7~) ~ ~ ~. If h is the thickness of the droplet, ~a ~ ’p ~ ~ where Q is the fluidY ( ) 1&#x3E; &#x3E; a R R
volume. Then Oa(t) R 3(t) = const.
The 0 a (t ) law is well explained theoretically [1,3] in terms of surface tensions and viscous forces.

ii) A microscopic precursor film advances ahead of the main droplet. This was discovered a long
time ago by W. Hardy and analysed more recently by various methods : ellipsometry and inter-
ferometry [4], scanning electron microscopy [5] and electrical resistivity [6]. The thickness is of
the order of 1 000 A and decreases slowly with the distance (x) to the triple line.

Recently, Teletzke, Davis, and Scriven (1 ), and one of us [3] have interpreted this film in terms
of the long range Van der Waals forces (VW) coupling the solid and the liquid. The kinetics of the
spreading is controlled by VW interactions (instead of Laplace pressure), and viscous resistance.
The theoretical prediction for the film thickness ((x) is a slowly decreasing function ~ (x ) ~ x -1.
At the junction between the film and the spherical cap, the thickness is predicted to be ’0 ~
aBa 1 (t ) where a is an atomic size. This explains why the precursor film is observed only with
wetting liquids (Oa -+ 0).

1.2 SPREADING OF POLYMER LIQUIDS. - This process is technically important (paints, cosmetics,
adhesives,...). Two anomalies have been quoted :

a) in some cases the drop spreads faster than expected from the Tanner analysis : the apparent
viscosity is low [7] ;

b) for certain substrates, the drop displays two macroscopic regions : a spherical cap, preceded
by a « foot », which is visible at low magnification, and much thicker than the precursor films
discussed above [8, 9].

1.3 ANOMALOUS SLIP IN POLYMER FLOW NEAR A WALL. - The basic idea is described in refe-
rence [10] : consider a simple shear flow described by a velocity field vx(z) == v(z) near a wall
(at z = 0). The stress at the wall (J is proportional to the local velocity v(0). The essential point
is that the coefficient k = 6 is independent of the molecular weight M of the polymer : thev(0)
entanglement effects responsible for the bulk viscosity rl(M) have no counterpart on a smooth
surface. Thus we may write k = rJo/a where r~o is comparable to the viscosity of the monomer

( 1 ) Unpublished.
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liquid. Far from the wall we may also write or = ?I 2013 comparing the two forms of cr we see thaty ~ dz’
the boundary conditions on the wall are :

where b is the extrapolation length

a) For entangled polymer chains (degree of polymerization N &#x3E; Ne(~ 100)), 11 increases

extremely rapidly with N. In the reptation model [1I], ~ ~ qo N 3Ne 1. This leads to b - N 3 x
Ne -2 a. For N = 103, Ne = 102, a = 1 A, b - 10 microns.

b) For non entangled chains (N  Ne) ri increases more or less linearly with N (ri ~ rio N).
No detailed analysis of the velocity field near the wall is available. If equation (4) still holds, we
would get b = Na, i.e. b - 1 000 A for N = 103.
The notion of a finite length b has been introduced very early in discussions of spreading

kinetics [12-14]. In some cases it was attributed to surface roughness [15], while in other cases it was
related to some microscopic molecular process [16]. As explained in reference [10] we believe that
slip is in fact irrelevant for most smooth surfaces (where Van der Waals forces dominate the
precursor structure). But, in the special case of polymer melts, b as predicted by equation (5)
may become exceptionally large, and relevant.

2. Droplet profiles.

Let us assume that the droplet height h is larger than b. More precisely we consider the case
/! ~&#x3E; b &#x3E; ’0’ We then expect to find three regions.

a) a spherical cap corresponding to the region where the thickness ~(r) is larger than b : here
normal viscous flow takes place, the slip is negligible and we recover the Tanner laws [1, 3] ;

b) a f’oot, where b &#x3E; C (r) &#x3E; ’0 : in the foot we have plug flows driven by the capillary pressures ;
c) a precursor film (~(r)  ’0) with a plug flow driven by Van der Waals forces.

2.1 POISEUILLE OR PLUG FLOWS. - We restrict our attention to the limit of flat droplets
(h ~ R), treated in the lubrication approximation. The mean velocity V(x, y, t) is related to the
two-dimensional pressure gradient Vp by the equation

In the limit’ &#x3E; b this reduces to a standard Poiseuille formula (for flow between a solid and a free
surface). In the limit’  b equation (3) describes a plug flow, dominated by friction at the solid
surface. We must add to (3) the conservation equation

2.2 MACROSCOPIC REGIMES. - Here, the pressure gradient is provided by the surface tension :
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The profile ~ (x, y, t ) is then governed by

We set y/ q = V*, y/ j7o = V* 

’ ’

2. 2.1 Profile near the triple line : Foot. - We call U = dR the velocity of the edge of the dropdt

(R(t) is the macroscopic observable radius). We assume that the mean velocity V in the vicinity of
the « triple line » can be approximated by U, and taken as constant. This will turn out to be cor-
rect if the foot region is smaller than the cap region. For’  b, equation (3 ) can be written (in a
one-dimensional form) :

where x is the distance from the edge of the drop, and where

A special solution is

where A = ~*/[/.
For ( &#x3E; b, we return to the usual spherical cap profile.
Setting’ = b in equation (8) gives the width f of the foot (represented on Fig. 2) :

Typically, for b = 100 ~ and U/V* = 10 - 3, f ~ 1 mm. Our calculation holds provided that
/~«).

Fig. 2. - Spreading of a polymer melt (8e = 0). Inside both the « foot » and the « precursor » the fluid
slips on the solid surface. In the « foot » the motion is dominated by capillary and friction forces.

2.2.2 Spherical cap regime (~ &#x3E; b). - For’ &#x3E; b, we recover the classical case of low viscosity
fluids [1, 3]. At ~ = b, the apparent contact angle deduced from (8) is ~ ~ 6// ~ ( U/ V * ) 1 ~ 3.

This leads to the Tanner spreading law [1]

For the spherical cap, 6a s ~!/R ~ ~/R 3.
Then R 1 ° (t ) ^_-, SZ 3 !~.
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Conclusion : The macroscopic radius R(t ) should follow the usual spreading law R(t ) ~ to.1;
the spreading velocity is small, because of the high viscosity of polymer fluids. The new effect is the
apparition of the « foot » of height b and width f ~ b8a 1(t).

2.3 MICROSCOPIC REGIME. - For small thickness (, we must include the pressure provided by
Van der Waals forces [7] : if A is the Hamaker constant (in the non retarded regime) :

The cross-over between the « foot » and the film is deduced from equations (11) and (3), used in
the plug flow limit. 

-

Taking V = U = const., treating (11) as one dimensional, and setting ~ = ’z~ ~ = xxo
we obtain the a-dimensional equation :

Setting a2 = A/2 Try we then find that we must choose :

For ~ ~ ’0’ the profile is dominated by Van der Waals forces. Again neglecting the variation of V
in the precursor region (V -+ U), the profile is given by

with yy/b = r~o/a = k. Then

The profile in the film is thus very slowly decreasing. The constant x, is comparable to xo.

3. Conclusions.

1) The existence of a macroscopic foot on a spreading droplet is a natural consequence of the
predictions of reference [10] : polymer liquids can have very unexpected plug flows on a macro-
scopic scale. The observed foot structure [4] is often much more complex than predicted by equa-
tion (8). Note however that our discussion reduced the polymer to a Newtonian fluid : viscoelastic
lags may well complicate the early stages of spreading.

2) The size of the foot is controlled by the extrapolation length b, and should thus be very
sensitive to the microscopic properties of the solid surface : this is discussed at length in [10]. But
systematic studies on foot dimensions versus polymer viscosity in the entangled regime should
be carried out in the future.

3) Our analysis assumed a relatively thick droplet (h &#x3E; b). In the opposite limit (h  b but

h &#x3E; ’0) the spherical cap region merges with the foot. We do not know the detailed profile for this
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case. But a simple scaling discussion of equations (3, 5), in the limit ~  b, suggests a modified
spreading law : R (t ) ~ t 1 ~ 8.

4) For short chains (N  Ne), a more precise calculation of the extrapolation length b is
required : we hope to construct this in the future.

5) Note that our whole discussion is strictly restricted to pure liquids : impurities can complicate
the profiles enormously - either by adsorption on the solid, or by evaporation and the resulting
Marangoni effects [4].
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