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Résumé. 2014 Nous étudions un modèle d’Ising particulier en champ aléatoire. Sur chaque site, le champ
aléatoire est soit + ~ avec une probabilité p/2, - ~ avec une probabilité p/2 ou 0 avec une probabi-
lité 1 2014 p. En utilisant des arguments de lois d’échelle des systèmes finis, nous montrons que pour p
petit, la fonction de corrélation moyenne de deux spins à une distance R décroît comme R-~(p) où
l’exposant ~(p) = 2 03C0p + O(p2). Les hypothèses faites pour obtenir ce résultat et les généralisations
possibles à d’autres modèles d’Ising en champ aléatoire sont discutées.

Abstract. 2014 We study a particular random field Ising model in dimension 2 at 0 temperature. On
each site the random field is either + ~ with probability p/2, - ~ with probability p/2 or 0 with
probability 1 2014 p. Using finite size scaling arguments, we show that for small p, the average correla-
tion function between two spins at distance R decreases like R-~(p) where the exponent ~(p) = 2 03C0p +
O(p2). The assumptions made to obtain this result and the possible generalizations to other random
field models are discussed
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The random field Ising model [1-5] (RFIM) has been for a long time a controversial subject.
The question of the lower critical dimensionality de (above which ferromagnetic order can exist)
has been much debated between those [2] who claim that de = 2 according to the Imry-Ma [1]
picture and those [3] who assert that de = 3 is a direct consequence of the dimensionality shift
d -+ d - 2 (a ferromagnetic spin model in a random magnetic field in dimension d has the same
exponents as the same model without a random field in dimension d - 2). The controversy
is now beginning to be resolved because recent studies [4] of the properties of an interface in
presence of a random field give more confidence in the fact that dp = 2 whereas some diffi-
culties [5] have been found in the arguments which gave ~ -~ 2013 2. Anyhow, even if one accepts
that df = 2, the properties of the RFIM right at d = 2 are not at all clear.
The purpose of the present Letter is to give arguments in favour of a Kosterlitz-Thouless phase

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyslet:019840045012057700

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyslet:019840045012057700


L-578 JOURNAL DE PHYSIQUE - LETTRES

at zero temperature in dimension 2 for a random field Ising model. The model is defined by the
Hamiltonian

where J is the ferromagnetic interaction, L denotes the sum over nearest neighbours on a
 ij &#x3E;

square lattice, the spins (Ji are Ising spins and hi is the random field on the ith site. The peculiarity
of this model lies in the probability distribution p(h) of the field hi : the random field can only
be 0, + oo or - oo :

This model is in several aspects simpler than other random field models : for example it can be
solved exactly in one dimension [6] at any temperature and for any value of p whereas other
random field models remain unsolved in ID at finite temperature.
Our study of the 2D case at 0 temperature consists of two steps. First, we calculate the corre-

lation length çn(P) for p  1 on an infinite strip of finite width n. We obtain that ~(/?) increases
linearly with n for large n

and we calculate the constant A for small p.
Then we use finite size scaling [7-9] which tells us that if çn(P) increases linearly with n, the 2D

system is at criticality.
We shall calculate the critical exponent ~ which characterizes the power law decrease of the

average spin-spin correlation function at criticality

by using a relation [8, 9] between the exponent r¡ and the amplitude A of equation (3).
Let us start by calculating çn(P) for a strip of width n with periodic boundary conditions in

the limit p  1. çn(P) is defined here by the exponential decrease of the average [10] correlation
function  (10 (1L &#x3E; between two spins at distance L along the strip

Consider a strip of width n with L + 1 columns numbered from 0 to L. Let us fix once and
for all, the spins of column 0 to be +. We define F+ (L) the number of unsatisfied bonds of the
strip in its ground state if we take all the spins of column L to be +. F+ (L) is simply related to
the ground state energy.

Similarly, let us denote by F_ (L) the number of unsatisfied bonds in the ground state if all
the spins of column L are -. Since on each site between columns 1 and L - 1, the field is random-
ly distributed according to (2), the difference A (L) = F + (L) - F _ (L) has a certain probability
distribution 6~(J). When L -~ oo, QL(d ) converges exponentially towards a limit probability
distribution 6~(~) and this exponential convergence gives the correlation length ~(/?)
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It is easy to see that (5) and (6) indeed define the same length Çn. The reason is that the corre-
lation function  (10 (1 L &#x3E; is just given by

We shall use (6) to calculate the correlation length çn(P) in the limit p  1. To do so, we need
to make some remarks about the structure of the ground state. Because p  1, the distance
between two spins in an infinite field is very large. The consequence is that the ground state
is composed of a succession of positive and negative domains along the strip. The frontier between
2 successive domains is always a straight interface which cuts only n bonds a cross the strip.
In addition to that, each spin with an infinite field which belongs to a domain with a wrong sign.
costs only 4 unsatisfied bonds. So in the limit p  1 the ground state of an infinite strip is com-
posed of a succession of very long domains separated by straight interfaces perpendicular to
the strip and inside the domains there are isolated spins with an infinite field opposite to the sign
of the domain. Keeping this structure in mind, one can write the recursion relation for J (L).
With probability 1 - np, all sites at column L have a zero field, therefore A (L + 1) = A (L).
With probability A~/2, there is one site at column L with hi = + oo, and thus A (L + 1 ) =
max (d (L) - 4, - n). This comes from the fact that F+ (L + 1) = F + (L) and F _ (L + 1) =
min (F_(L) + 4, F+(L) + n) because the system has to choose the lowest energy between an
isolated spin + in a domain - which costs 4 unsatisfied bonds or a frontier between column L
and column L + 1 which costs n unsatisfied bonds. Similarly with probability ~p/2, there is one
site at column L with hi = - oo and then J(L + 1) = min (A(L) + 4, n). We see that J makes
a random walk constrained to remain between n and - n and the only allowed values of A
are ± (n - 4 K) with K integer. One can easily write the recursion relation for Q~(J) :

where e = 1 or 8 = 2013 1.
From (8) and (9) we calculate the correlation length Çn given by (6). For an odd width n &#x3E; 3,

one finds

which means that

since p  1. For even n &#x3E;, 4, one finds similarly

The cases n = 1 or n = 2 are irrelevant here since we are only interested in the large n behaviour.
We want to emphasize that the whole calculation presented until now is valid only if p  1.
We even need np  1 for our picture of the ground state to be true. Formulas (10) and (11) give
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exactly the linear term in the small p expansion of n 1. The remarks made on the structure of the
ground state and the fact that we consider on each column only 2 configurations (the spins are
either all + or all - ) are only valid to first order in p. To calculate the order p2 in the expansion
of çn-1, one should take into account situations where pairs of spins in an infinite field are at
distances of the order of the strip width.
To derive equations (10) and (11), we used the fact that the ground state has a simple structure

when np  1. It is not obvious that (10) and (11) remain valid in the whole region p  1 including
np &#x3E; 1. One can argue that in several examples, such as low temperature expansions for ferro-
magnets, the simplest way of deriving the expansion is to consider configurations with a finite
number of overturned spins whereas the expansions remain valid for finite densities of over-
turned spins. In these examples, this procedure is perfectly justified For the problem studied
here, we did not find any convincing argument to prove or to disprove the validity of (10) and
(11) for np &#x3E; 1. One way to attack the problem could be to calculate the order p2 of çn-1(P).
If this term is proportional to n2 for large n, this means that (10) and (11) are wrong for np &#x3E; 1.
On the contrary if the order p2 is linear in n, this would strengthen the validity of (10) and (11).
Unfortunately we do not know for the moment how to calculate this order p2 for all widths n.
In the following, we shall assume that (10) and (11) remain valid for p  1 even if np &#x3E; 1.

It is then easy to see in (10) and (11) that for p  1, the Çn have the behaviour (3) with A given by

Let us now use finite size scaling. The first thing that finite size scaling [7-9] tells us is that the 2D
system is at criticality if the correlation length çn(P) increases linearly with n. Here we find that
Çn increases linearly with n in the region p  1. Therefore we conclude that for p small enough
there is a line of critical points.
The second thing is a relation between the coefficient A and the exponent r¡. It has been

observed [8-9] for a large class of 2 dimensional models including the Ising, the Potts, the XY
and the Baxter model that the coefficient A is related to the exponent 11 (see Eqs. (3) and (4)) in
the following way .

There does not yet exist a completely satisfactory proof of this relation (see Refs. [8] and [9]).
If we assume that (13) is also valid for the RFIM studied here, we get

since A -1 is known only up to order p. This way of calculating the small p expansion of r¡ from
the expansion of A is very similar to what has been done for the 2 dimensional X Y model at low
temperature [9].

In this work, we have calculated the çn(P) for p  1. Under the assumptions that finite size
scaling holds and that relation (13) holds also for this RFIM, we have found a line of critical
points for small p and we have the expression of r¡ for small p..

It would be interesting to continue the small p expansion of the çn(P) in order, to confirm the
fact that çn(P) increases linearly with n, to have more terms in the expansion of 11 and to see the
value of the end point p* of the line of fixed points. It would also be interesting to generalize
the results of this letter to more usual distributions of random fields, like a Gaussian of width P.
It is reasonable [11] to think that for ha  J ~, one has ~n 1 N h2 In. This would mean that 17 - h2
but the calculation of the coefficient is more difficult because L1 can now take a continuous set
of values. We hope to make some progress on these aspects in the future.

Lastly, it would be also interesting to consider the probability distribution of the correlation
functions since the average correlation functions do not always contain the whole information
and the most probable correlation functions may have different behaviours [10].
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Apart the question of the lower critical dimension and the possibility of a line of fixed points
at d = 2, there remain several aspects to be understood in the random field Ising model : the
complicated low temperature phase even in high dimension [12] or the possibility of Griffiths [13]
singularities even when the average field is not zero [14].
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