N

N

On the stability of the quasi-onedimensional metallic
phase in magnetic fields against the spin density wave
formation
L.P. Gor’Kov, A.G. Lebed’

» To cite this version:

L.P. Gor’Kov, A.G. Lebed’. On the stability of the quasi-onedimensional metallic phase in magnetic
fields against the spin density wave formation. Journal de Physique Lettres, 1984, 45 (9), pp.433-440.
10.1051 /jphyslet:01984004509043300 . jpa-00232366

HAL Id: jpa-00232366
https://hal.science/jpa-00232366
Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/jpa-00232366
https://hal.archives-ouvertes.fr

J. Physique Lett. 45 (1984) L-433 - L-440 ler M1 1984, PAGE L-433

Classification
Physics Abstracts
75.50 — 71.30

On the stability of the quasi-onedimensional metallic phase
in magnetic fields against the spin density wave formation

L. P. Gor'’kov and A. G. Lebed’

L.D. Landau Institute for Theoretical Physics, The USSR Academy of Sciences,
117334 Moscow V-334 ul. Kosygina 2, US.S.R.

(Regu le 24 janvier 1984, accepté le 16 mars 1984)

Résumé. — Nous montrons que la stabilité d’un état & ondes de densité de spin d’un métal quasi
unidimensionnel, a surface de Fermi ouverte, augmente sous champ magnétique. Ce phénoméne
peut conduire 3 une série de transitions sous champ. Nous suggérons que ce modéle peut étre une
interprétation du diagramme de phase des composés (TMTSF),X sous champ magmnétique.

Abstract. — For a simple anisotropic metal model with two open nested Fermi surfaces, it is shown
that the tendency to spin density wave formation increases when a magnetic field is applied, which
could lead to a series of phase transitions as functions of the field value. The results are suggested
as an explanation of the phase diagram of the (TMTSF),X compounds.

In this letter we report an unexpected result, predicting in the framework of a certain theore-
tical model, the instability of the quasi-onedimensional (Q1D) metal state with respect to spin
density wave (SDW) formation in a moderate magnetic field. It is in direct correspondence with
the recent experimental discovery of the remarkable phase diagram in the (TMTSF),X com-
pound family (see in Refs. [1-6]). A typical phase diagram in the (T, P, H)-space for these mate-
rials, as has been obtained for X = PF¢ and X = ClO,, is shown in figure 1. The twice shaded
part of the surface is the boundary between the anisotropic (Q1D) metal phase with quasiplanar
open Fermi surfaces and the field-induced spin density wave (FISDW) state. This boundary
is marked with the so-called « onset » or threshold field H, which is both temperature- and
pressure-dependent [3, 4]. The magnetic nature of the FISDW state is tested in NMR measure-
ments [5, 6], the Shubnikov-de Haas (SdH) oscillations, observed in the magnetic field H exceed-
ing the onset field H > H,, [3, 4], have enabled one to conclude the semi-metallic character of
this state. However some unusual features of these oscillations [1, 4] and especially the most
recent observation [7, 8] of the step-like Hall voltage behaviour with the field in (TMTSF),CIO,,
in particular, confirming the fact that the Fermi surface is open at H < H,, have led to the idea [7]
that these fields H, at which the « SdH » oscillations occur, could actually correspond to some
cascade of phase subtransitions in the FISDW state. (The alternative explanation [7] of the
observed Hall steps in terms of the quantized Hall conductivity is not discussed here, since the
longitudinal resistivity does not testify to any decrease at these fields.)

Low values for all typical parameters (T'spw ~ 10 K, P ~ 10 kbar, H ~ 50 kOe), charac-
terizing the phenomena reflected by the phase diagram in figure 1, demand an explanation which
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Fig. 1. — Phase diagram of the (TMTSF),X salts in the (P, T, H)-space.

would permit one to forget high temperature properties of these compounds due to their original
Q1D structure. If this point of view is accepted the simplest explanation of the appearance of
the antiferromagnetic state in these materials lies in the Overhauser mechanism of SDW for-
mation () based on the Keldysh-Kopaev model [9] with the electron spectrum property :

ep + Q) = — &(p) 1)

(here Q is the nesting vector characterizing the spin wave periodicity).
This explanation has first been suggested in [10] where the tight binding model has been used
for the energy spectrum :

e®) = + v(p, T k) + 1,(01) e

where the plus and minus correspond to the spectrum near the right-hand and left-hand quasi-
planar sheets of the Fermi surface, respectively. In the nearest-neighbour interaction approxi-
mation [10] :

tg(P_L) = Ly COS (Pys b*) + o COS (P €*) 3)

perfect nesting is achieved if
Q = (2 kg, m/b*, m/c*) “4)

which for the (TMTSF),X family would correspond to the double lattice periods in all space
directions. (In what follows we use the orthorhombic lattice model.) The 1D nesting vector

Q = Qkg0,0) @)

shall be discussed later, but at first glance this choice would not be compatible with the existence
of the gap (dielectric state at T = 0) in (TMTSF),PF¢ and with a fairly low Ty, at ambient
pressure (~ 12 K) and the estimated values of ¢, ~ 100 K [11]. An account of the next-neighbour
interactions would slightly change the spectrum (2) :

ti(p,) = t2(py) + t1(p)) ©)

() We do not discuss here the reasons why the tendency to the SDW formation prevails over the CDW
pairing in these materials taking merely the fact as given.
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and t](p,) is now responsible for violations of perfect nesting of the Fermi surface sheets (3)
and (4). As is known, the nesting pairing allows for some deviations from the perfect conditions
if the value of t| does not considerably exceed the magnitude of T, = Tgpw at t; = 0.

The key idea for the subsequent discussion is that, when the pressure is applied, the value
of t| increases gradually suppressing the SDW state in accordance with figure 1. (The change
of t? does not violate the nesting conditions, we shall also not consider the narrow field interval
for the superconductivity on the phase diagram).

These comments are equally relevant to both the SDW and CDW types of pairing. A magnetic
field introduces distinction between the two behaviours. Whereas the antiferromagnetic type of
pairing corresponds to the nesting vector between the Fermi surfaces for spins of opposite direc-
tions (the vector is not affected by the field), the CDW pairing takes place for spins of the same
directions. As a result, instead of (1)

e+ Q) +e =2 H 1)

which points to the mechanism by which the applied field, in principle, inhibits the CDW pairing.

To conclude this short discussion, let us also mention that in most experimental environments
the phase diagram of figure 1 corresponds to the geometry when the field is oriented in a parallel
direction to the c*-axis of the sample (H./c*). These materials at low temperatures are actually
more like layered compounds with the TMTSF-conductivity sheets in the (a, b*)-plane. Corres-
pondingly, it is also manifested in very small values . < f..

Thus, it is necessary to find a mechanism restoring in high magnetic fields the tendency to
SDW pairing in the metallic phase (the respective pressure region is shown by the dotted line
in Fig. 1). The physical idea is that an electron moving in p-space along one of the open Fermi
surface sheets in direct space performs motion along the quasiclassical trajectory, determined
by the momentum =+ k; and this motion becomes limited and periodic in the perpendicular
direction in the presence of the field due to the periodicity of the dispersion law ¢, (p,) in (2).
This would increase the effective one-dimensionality of electron properties. To demonstrate
this effect quantitatively, we shall consider the generalized susceptibility, x(Q, T, P, H) = x(Q),
describing the linear response of the system to the external staggered field :

h(Q) = (5,),5 exp(iQr) . (6)

An expression for the susceptibility is easily obtained by summation of the standard « ladder »
diagrams :

2Q) = 1Q)/[1 - 2%,Q)] - (7
(Here x0(Q) is the response for noninteracting electrons at given (T, P, H), 4 is an appropriate

interaction constant [10].) As for x,(Q), it is more convenient to write it now in the mixed (w, p,, )
representation :

d
0Q =TY j (21::)2 jdX’gH(iwm P;xX)g__(iw,,p, — Q; X, x) ®)

where g, . (g_ _) are slowly varying parts of the electron Green function near the right(left)-hand
Fermi surface sheets. Thus

G, . (iw,, p,;x,x") = exp[ike(x — x)] g4 +(iw,, p, ; X, X) . 8)

Taking the geometry into account (H.7c*), substituting p — p — %A into (8) and choosing the
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vector potential, A, in the form A = (0, Hx, 0), we arrive at the equation defining g, ,

. . d eHx . ’ ’
{lwn + lva - t.L(pb“ - '—c_apc‘) }g++(lwm pl;xsx) = 5(x - x)

which is immediately integrated in the form

sign w, w,x—-x) i (" eHu
9++ = gn CXP{_—"'——’——_J t.L(Pb*_T’pc*>du} )

1% v v
x

atw,(x — x')/v > 0 (and is zero in the opposite case). The substitution of (9) into (8) (the expres-
sion for g_ _ results from (9) due to the change of the sign of v) shows that only the terms ¢ (p,)
making the nesting imperfect are retained in equation (8). In what follows :

t'(p) = 2ty cos (2 pye b¥) + 2 .. cos (2 p €¥). 3)

Unlike (3), equation (3') includes the next-neighbour interactions. By means of (3'), (8) can
be rewritten explicitly. After averaging (8) over p, and after subsequent simplifications the
stability condition for the metallic phase, implying that the denominator in (7) is positive, finally

becomes :
1 ® 4ctye . (b*eH 41, 2aT dx
- — J J _——2>0. 10
Z L o[veHb* Sin ( c x)] °< > x) " (2 nTx> ao)

v

L

S and the low cutoff, d, were introduced. As

<Here the dimensionless constant { =

nTyd

usual, the cutoff will drop out from equation (10), if the relation (™! = — In is used,

where T, is the transition temperature at f,. = t,. = 0.)

The physical effect which has already been qualitatively explained above, is now evident from
equations (9) and (10). In fact, at H # O the argument of the first Bessel function is now perio-
dically dependent on x. If t,. < t;., in the first approximation equation (10) transforms

* 4 cty, b* eH
1_ Jo[ T sin( ¢ x)] 27T dx =>0. (10"
&), veHb* ¢ »sh (2 nTx)

A new feature of this expression, compared to the case H = 0, is the appearance of the loga-
rithmic divergence in the integral at large x (x > c¢/eHb*). Averaging over x and using the relation

2 j " Jo(zsin o) do = J3(z12) an

0

one sees from (10’) and (11) that (at ¢t = 0) the metallic phase would never be stable at zero
temperature and finite H, except a discrete set, H,, of certain values of the magnetic field, H,

defined by the condition (11) :
2 Ct;,t
J =0. 11
°<veHb*) (1
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Bearing in mind that 2 ¢, > nT/y (i.€, at H = 0 the normal metallic phase corresponds to
the given pressure) and substituting the first zero of the Bessel function, one finds that the first
point of this set, H,, from the right-hand side (i.e., from the side of large fields) lies at

(12)

At T, ~ 10K, v ~ 107 cm/s, b* ~ 7.7 A the right-hand side of (12) would yield H, < 10° Qe.

At larger H, according to (10’), the SDW phase is completely restored with Tgpy = T,
which could be even higher than Ty, at P = 0, since, of course, 1, is finite at ambient pressure.
When the magnetic field decreases, the « points » of the metallic phase (at T = 0) are concen-
trated near H = 0 according to the asymptotic behaviour of the Bessel function zeroes (11') :

2 ct}./veH, b* ~ n(k - %) k> 1). (12))

A schematic T-H phase diagram at fixed pressure (i.e. at fixed t;.) is shown in figure 2. The
typical « transition temperature » Ty (k), the value of the « subphase » k, exponentially decreases
with an increase of the number k. With logarithmic accuracy the corresponding behaviour can
be obtained directly from equation (10’) :

In (13)

]

nT, - _J2(2ct,’,*> b* eHv

2 t;,. b veHb* CTSDW ’
This infinite sequence of transitions would resemble to some extent a sequence of exciton phases
in semiconductors, the possibility of which was discussed in [12] many years ago. The phase
diagram of the type shown in figure 2 is, of course, an artefact of the 2D dispersion law, (see below)
and becomes unstable if some finite ¢/, is taken into account. In fact, according to (10) the pre-

’

41
sence of the factor JO( alad

) in the integral immediately makes again the whole integral con-

vergent at large x ~ v/t/.. Comparing the value of Tp, estimated at small H from equation (13)
with the value of t., one gets that the oscillations shown in figure 2 do appear only at the onset
field H > H, where

t!
Hy ~ TClys

nT, b ,
~— ln_Zt,’,*y/n_ : (13"

i

S

FI
.~Ss

O ...HsHy Hs Hz H
H /Arbitrary unitgs

>

Teow/Arbitrary unitg

Fig. 2. — Infinite series of possible phase transitions in the presence of the magnetic field H.
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and only a few oscillations can be realized in practice. Let us also add that the finite ¢/, converts
the « points » of the metallic phase stability, H,, into small stability « islands », the width of
which can again be estimated from the condition :

2 cty. b* eHv
2 b ~
J§ <veHb *> In o 1

for the magnetic fields in the vicinity of the corresponding H, from (11').

At this stage, we shall not go into further details, since our stability condition (10) holds for
both the thermodynamic stability of the phase and its metastability. Otherwise, the boundary
line in figure 2, in principle, could describe the « supercooling » line for the metallic phase while
the real transition into the SDW phase (or between two different SDW phases) would be of
the first order. Some hysteresis features have been observed in [4] near some field values ascribed
to the SdH oscillations. The sharp temperature-dependent steps in the Hall voltage in
(TMTSF),ClO, [7] also point in the same direction. Note that the magnetic field appears in
the discussed phenomenon approximately in the same combination as would be also expected
in the SdH effect definition of the closed orbit areas for the hypothetic semimetallic SDW phase
(cf. Egs. (10) and (3')). As for ¢/ (p,), it has been assumed in the form of equation (3') only for
the sake of convenience for the subsequent discussion. Its modification does not change the
precedent results qualitatively.

We would also like to repeat that at the field H > H, from equation (12) the SDW finally
becomes fixed. Since the above discussion shows that the dielectric state emerges in a large
field (at T = 0), all the conducting mechanisms are expected to disappear. However a more
thorough investigation of the SDW phases, restored by the magnetic field, is necessary.

Unlike the SDW phase, the CDW state in general is suppressed by a strong magnetic field,
according to equation (1'). Nevertheless, the competition between this inhibiting mechanism
and the phenomenon of the « one-dimensionalization » of the electron spectrum expressed by
equation (10), could be important also for the CDW pairing at the intermediate fields because
both mechanisms involve the same dimensionless combination of parameters.

. So far we have preferred to explain the phenomenon in terms of the nesting vector from equa-
tion (4), since most of new effects observed, including the unusual « SDW » oscillations, may be
described in this case by the appropriate choice of T, and ¢,. The main exception is that the
sizes of the electron (hole) pockets, as defined by the Hall measurements [7, 8, 13] in
(TMTSF),ClO,, are too large. This gives rise again to the necessity of discussing the pairing
with the « direct » nesting vector (2 kg, 0, 0). There are two points which should be mentioned
in this connection.

For the 3D (or 2D) electron dispersion law electron-electron interactions restore the Fermi
liquid description, if the temperature is low enough. The above results (Egs. (8, 9)) state rigo-
rously that the 2D electron spectrum, if its Fermi surface consists of two separate open sheets,
is absolutely unstable at a low enough temperature (at the appropriate sign of interaction) with
respect to the SDW electron-hole pairing. The physics is that electron and hole from the oppo-
site sides of the Fermi surface move together along the chain axis, their motion being limited
in space in transverse direction, provided the magnetic field is imposed.

For the (TMTSF),X one-chain-compounds it is plausible to consider equation (3) as a good
approximation for their electron spectrum. In this case in all the expressions one should substi-
tute t,. « (and b*/2, c*/2) for t,. . (and b*, c*) in accordance with (3). It appears now that the
instability mentioned above is related to a wider class of the nesting wave vectors

Q = 2k + 4,0,0)
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and, instead of equation (10’), one has

1 ® 8 crbt . eHb* 2nT dx
T f Jo[eHvb* sin ( 3% x)] cos (6x)w >0
v

d v sh

Using the same procedure of the averaging of the oscillating factors over x at T — 0, one obtains
easily that the logarithmic divergence at large x is now connected with the coefficient :

4 cty, oc
2 b . =
J'"(veHb*) T Hb

This coefficient reaches its maximum at

4 ctbt 4 tb#
& —; o= . 14
" veHb* v (14)

In other words, at low fields the instability would for the first time correspond to the biggest
possible electron (or hole) pockets. The size of pockets given by (14) is in a good correspondence
with the t,, estimates (z,» ~ 150 K) and the Hall effect data [7, 8]. The possibility to construct
the ground states of a set of subphases characterized by  which decreases with an increase in
magnetic field, is now under investigation.

In conclusion, we have given theoretical arguments explaining the puzzling fact of restoration
of the SDW phase in the (TMTSF),X compounds by the magnetic field. The role of fluctuations
of any kind has not been considered, since temperatures are assumed to be low enough to permit
the Fermi liquid approach. Two models (i.c. the « perfect » nesting and the « direct », or one-
dimensional pairing) could correspond to the physical situation in different compounds. The
Hall data [7, 8] for ClO, showing comparatively large pocket volume in this material might be
understood in terms of such a direct nesting. The expected phase diagram is shown schematically
in figure 3.
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Fig. 3. — The phase diagram of Fig. 1 with the theoretical representations, developed in the text, taken
into account.
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