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Résumé. 2014 En variant les conditions aux bords chargés, on sélectionne de façon différente les modes
instables accessibles. La sélection de modes est reliée à des analyses non linéaires de ces problèmes.
Une comparaison est établie avec la sélection des modes dans des instabilités convectives.

Abstract. 2014 We present an experimental study on the selection of the wave number in the buckling
of a thin elastic rectangular plate, subjected to a compressive force while being held laterally. Boun-
dary conditions act selectively through non-linear mechanisms to restrict the accessible states above
threshold.
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We report experiments on mode selection in the mechanical buckling instability of a thin
elastic plate subjected to uniaxial compression.
The geometry of this experiment is sketched on figure 1. The lateral edges of the elastic plate

are prevented from deflecting perpendicularly to the plane of the plate, but are free to stretch
or extend. We assume no bending moments and shear along the edges. An axial load F is applied
along x.

In this case, if there is no initial deflection - geometrical imperfection [I] - in the unloaded
state, the plate remains flat when the load increases from zero. The relation between the uniform
stress (cr = F/he, where h is the width and e is the thickness of the plate) and the axial strain
(relative shortening) is given by Hooke’s linear law.
Above a certain loading - or critical force Fe - buckling occurs continuously and reversibly

and out-of-plane deflections develop with spatially periodic structures of alternate humps and
wells of length approximately equal to h. In the buckled state the axial strain is increased with
respect to the unbuckled state; consequently the effective stiffness (inverse of the slope in the
shortening-load curve) is diminished.
We are interested in the selection mechanism of these periodic modes. Changes of the waveform

was initially observed by Stein [2] when the loaded side was clamped, for rectangular-plates of
longitudinal extent L and aspect ratio F = L/h = 5.7 ; he observed a jump from 5 to 6 modes, by
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Fig. 1. - Experimental. The plate is held laterally along parallel lines I y I = h/2 and subjected to an uni-
axial compressive force F along the x axis.

increasing the load. This phenomenon, sometimes called secondary buckling [3], was reexamined
by Pomeau [4], who related this jump to the non-linear influence of boundary conditions on the
selection of modes among the accessible ones deduced from a linear stability analysis. Our experi-
ment gives a study of this multiplicity of deformation modes for different boundary conditions
and extends a preliminary report [5].
The geometry of the experiment is shown in figure 1. The dimensions of the brass alloy ( criso-

cal ») plate used are : length L = 180 mm, width h = 20 mm, thickness e = 0.1 mm. The plate is
guided along its unloaded longitudinal sides with boundary conditions

w(x, y ) is the deflection of the plate. The deformation is measured with a mechanical gauge, of
inductive type and can also be observed by direct optical visualization and by a Moire reflection
technique.
The plate is subjected to a constant compressive force, F, along its short sides. The two end

boundary conditions, used in the present study, sketched on figures 2a and 2b, are, for I x = L/2
and Y ~ ~ h/2 :
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(b) clamped case (C.) : w = ~ = 0 ; ~ ~ 0. (2b)ox 

I 

ox
They can be expressed as limits of general boundary conditions,

where the length « k » is a measure of the efficiency of the clamping at both ends : k = oo, 0 for
cases a, b.

In this letter we present the first results concerning the stability of deformation modes in the S.S.
case (a). This boundary condition applied to the loaded sides is quite difficult to obtain exactly
experimentally. In addition the inhomogeneity of the pressure distribution along the short side
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reduces the « effective width » [1] of the plate above the buckling threshold and consequently
reduces the ultimate load on the plate. By applying a layer of epoxy resin on the flanges near the
edges, we have been able to reduce this effect up to larger pressures F ~ 3 times the critical
force Fe.
We consider the solution of the Fiippl-Von Karman equation [6] for the linear instability

problem, above F~. With the S.S. boundary conditions (2a) considered here, a sine-wave solution
is expected to apply (Fig. 2a) :

The boundary conditions for the stress distribution [4] do not influence the resolution of the
linear problem, when there are not restrictions to the lateral expansion of the plate.
The lowest threshold of linear instability is given by [6] :

where the force F and the wave number of distortion, q, have been expressed in dimensionless form

E (= 13 000 daNjmm2) and v (= 0.34) are the Young and Poisson moduli of the brass plate.
In the S.S. experiments, we measure a value

not far from the theoretical threshold given by (4).
The solution of the linear problem as a function of the wave number q is given by the following

equation, where F and q are given in dimensionless form as in the rest of the paper :

and is the marginal stability curve (L) in the diagram of figure 3. We have plotted a branch of

(2a)

(2 b)

Fig. 2. - Gives schematically the two boundary conditions used : (2a) simply supported : the deformation
above threshold is sinusoidal with a constant amplitude wo ; (2b) clamped : the shape of the deformation
just above threshold which satisfies the boundary conditions (2b) has a modulated envelope.
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Fig. 3. - Stability diagram giving the force versus wave vector of the distortion, in units F/F~ . The points
above the curve L are linearly unstable. The full dots are the experimental data giving the lower limit of
non-linear stability with boundary conditions (2a). They lie below the open dots data given in Ref. [5] which
were obtained in a similar fashion for the boundary conditions (2b). (Note the factor of 2 to 3 difference
along the vertical direction.) The theoretical lines (t +, t - ) were obtained in this last case, in Ref. [4]. The
sequence indicated by 3 arrows and leading to a decrease of q from q to q2 as the applied force is pro-
gressively reduced corresponds to boundary conditions (2a). The parabolic curve E gives the lower limit
of stability defined by Eckhaus criterion near Fc. Its range of validity is expected to correspond to that
of the parabola Lp of linear stability.

parabola (Lp) next (F~, ~)’ It corresponds to the validity of a « parabolic » approximation using
expansions in (F - FJ, (q - qc)

with ~2 = 1/7~.
The experimental procedure used to obtain the stable non-linear deformation modes is as fol-

lows : we apply a force sufficiently larger than Fc. A given wave number ql (see Fig. 3) is « forced »
by applying temporarily a gentle pressure perpendicular to the plate, to the points corresponding
to the maxima of amplitude. Then the force is slowly decreased. At a lower value, still larger
than F~ (q 1 ), a jump in the solution is obtained, which corresponds to the suppression of one mode
of the structure and to a discontinuous transition to a state of lower wave number q2, if the initial
value q 1 is larger than qc. In such a case, we « hear » a characteristic « click » due to the mecha-
nical process involved in the resorption of two of bulges.

If q 1 is smaller than ~, a transition leading to a larger value q2 takes place when the force is
small enough. It involves the nucleation of an additional mode, occurring initially as a dip on the
top of a bulge as may be observed with the deflection gauge. This non-linear limit of stability is
defined by a set of black dots on the diagram of figure 3, strictly above the linear limit (L). This
behaviour is reminiscent of the Eckhaus instability mechanism [7] of hydrodynamic flows which is a
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non-linear stability mechanism, caused by a spontaneous amplification of perturbations parallel to
the periodic structure (phase perturbations) of compression and expansion of the periodic modes.

In the lowest order non-linear approximation, the Eckhaus limit can be written, as in other
instabilities with spatial organization, by the parabolic approximation

For comparison, this limit is indicated on the figure 3 by the dashed line E; it is a parabola with a
curvature larger by vI3 than the linear one given by equation (7). This approximation applies for
~ = F - F~/F~ ~ 1, so it is not valid for our experimental points which are further above F~.
As far as we know, explicit calculations in the full elastic post buckling region (or strongly

non-linear case) which could be compared with our experimental points do not exist yet.
The solution for the clamped case is expected to be different from the previous one : in this case,

the sine-wave (3) with constant amplitude does not satisfy the boundary conditions (2b). In the
immediate vicinity of the threshold, the envelope of the modulation has a shape sketched on
figure 2b [8]. This amplitude modulation is responsible for the shift in the value of the critical
force F~. The influence of the « boundary layer » at the clamped sides may be easily understood
from a Landau-Ginzburg expansion with a gradient term, applied to this instability. It leads
to the result [8] : Fc(~) ~ Fc(oo) [1 + n2 ~o/T 2] ; in our case, in dimensionless units Fc(~) =
4 n2[1 + l/r2] gives an approximately analytical function, in agreement with numerical calcula-
tions [9].
Using the same procedure as for a S.S. plate, we have obtained experimentally in reference [5]

the non-linear limit of stability in this case. The results are indicated in figure 3 by open dots
above the full dots obtained for the S.S. case. Note the large vertical difference between data
obtained for the same wave-numbers in the two configurations. The role of clamped sides in the
boundary conditions (2b) with modulated amplitude, was shown [4] to lead a band of the possible
modes of deformation restricted, near the instability minimum, to a cone angle : limit straight
lines t + and t - on figure 3. We note on the figure that the experimental results do not agree
quantitatively with the theory. In reference [5] we had suggested the possible role of imperfections
in the experimental boundary conditions. Recently Potier-Ferry [10] has extended the theoretical
analysis of the problem to the buckling of a beam with non-ideal clamping using the general
boundary conditions (2c). He has found that the theoretical limit t - changes slope when the
clamping parameter k increases, in the direction of the experimental data (points to the left of
q~) in qualitative agreement with our experimental findings.

In conclusion, the comparison between both sets of experiments has shown :
i) a broader range of non-linear modes in the simply supported case than in the clamped one;
ii) a different mechanism for the jump between solutions in the two cases : for (S.S.) condi-

tions (2a), it takes place in the central region of the plate by an addition or subtraction of one
mode (two bulges) of the structure. In the (C.) case (2b), it occurs at the ends of the plates where the
deformation is only of second order in x and corresponds to a variation by only one bulge (half
a wave length) at a time.

There is a striking correspondence between this problem and the Rayleigh-Benard problem of
convection of fluids heated from above which is the typical example of hydrodynamic instabilities
with periodic spatial structure. The selection of wavenumber in this instability has brought about
much controversy [11], until it was shown that boundary conditions played a crucial role in the
selection of modes among those accessible from linear stability criteria [4, 12].
The present experiment in elastic buckling (potential system) provides a simple illustration of

the influence of boundary conditions on mode selection. It offers the possibility to vary these
conditions, and has the advantage to handle with strictly two-dimensional structures, without
transverse destabilizing mechanisms which are found to dominate in the Rayleigh-Benard
example.
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However the role of impertections or non-homogeneous boundary conditions is very sensitive
in mechanical experiments and further technical progress must be accomplished before an expe-
riment, approaching the « critical » domain, can be made.

Let us also note that some recent works [13] have proposed generalization of the boundary
conditions (2c) in the weakly non-linear region. Their results give qualitative indications for
deviations from the Eckhaus limit in the direction of our experiments in the (S.S.) case.
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