
HAL Id: jpa-00232312
https://hal.science/jpa-00232312v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Brownian motion in one-dimensional disordered systems
R. Maynard

To cite this version:
R. Maynard. Brownian motion in one-dimensional disordered systems. Journal de Physique Lettres,
1984, 45 (2), pp.81-87. �10.1051/jphyslet:0198400450208100�. �jpa-00232312�

https://hal.science/jpa-00232312v1
https://hal.archives-ouvertes.fr


L-81

Brownian motion in one-dimensional disordered systems

R. Maynard

Centre de Recherches sur les Très Basses Températures et Université Scientifique et Médicale de
Grenoble, B.P. 166 X, 38042 Grenoble Cedex, France

(Re~u le 29 septembre 1983, revise le 18 novembre, accepte le 30 novembre 1983)

Résumé. 2014 Le mouvement brownien d’une particule plongée dans un potentiel aléatoire du type
Wiener-Lévy est étudié. Les fluctuations thermiques exercent une force aléatoire ou communiquent
une énergie aléatoire à la particule qui effectue un mouvement brownien. Ces deux types de bruit
conduisent à deux relations d’échelle distinctes de l’espace (L)-temps (t) : L ~ In2 t ou L ~ t03BD. L’appli-
cation de ce modèle au cas d’une paroi de domaine est discutée et les expressions des susceptibilités
ou conductibilités de basse fréquence sont établies en vue d’une comparaison éventuelle aux expé-
riences.

Abstract. 2014 The Brownian motion of a particle in a one-dimensional random potential of Wiener-
Levy type is studied Thermal fluctuations exert random forces or transfer random energies which
set the particle in Brownian motion. These two kinds of noise provide different asymptotic space
(L)-time (t) scaling relations : L ~ ln2 t or L ~ t03BD. The application of this model to a single domain
wall is discussed and the expression of low frequency magnetic susceptibility and electrical conduc-
tivity are established and possible comparisons with experiments are discussed
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1. Introduction.

The recent interest in the diffusion problem of a particle in a random one-dimensional lattice deals
with models which are a bit far from reality. The basic microscopic features of these models are
the symmetric or antisymmetric transition rates between the nearest neighbour sites, taken as
independent random variables and obeying a given probability density (see e.g. Ref. fl]). These
assumptions are not well established in the physical situations discussed in this context as for
instance the one-dimensional conductors. I propose to study here the Brownian motion of a par-
ticle or defect like a rigid domain wall in a disordered medium which exerts weak pinning forces.
There is a crucial distinction between the energy fluctuation thermal noise and the force fluc-

tuating thermal noise which leads to two different types of law, the first of which is similar to the
Sinai regime [2, 3] while the second one produces a new asymptotic power law of diffusion. By a
simple scaling method involving the most probable relevant variables, the space-time relations
are established as well as the related measurable quantities like the frequency dependent magnetic
susceptibility and electrical conductivity. Possible applications to a magnetic domain wall or a
charged wall of discommensuration in a one-dimensional solid are discussed.
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2. The model

Let us consider an elementary displacement ~x of the particle along the one-dimensional axis Ox
and suppose that a random increment 8 V of the potential energy results from this displacement
V(x) is a random function with an independent random increment which is represented by a
random curve of Brownian or Wiener-Levy type. Any extended rigid defect embedded in a disor-
dered medium has the stated property of being able to change its potential energy for an elemen-
tary displacement bx if impurities or defects are present in the swept volume. In this sense, the
above assumption made for V(x) seems very general with the condition that the defect would
be extended enough to explore large values of V(x). This hypothesis was put forward in 1942 by
Neel [4] in terms of the polygonal contour energy of a Bloch wall in order to successfully explain
the Rayleigh regime of ferromagnetic substances [5]. Additional hypotheses concerning the origin
of the noise are necessary for a description of Brownian motion. Two situations are possible.
By contact with the thermal reservoir the thermal fluctuations act either as forces (magnetic
field) or as energy. Historically, the Brownian motion of colloidal particles belongs to the first
category where the random forces originate from elastic collisions with atoms of the fluid within
which the particles are immersed. In magnetism, the local fluctuations of the magnetization create
fields which act as random forces on the Bloch wall. On the contrary the thermal fluctuations of

energy are often due to inelastic collisions with the excitations of the thermal bath (phonons,
etc...). In the case of thermal fluctuations of forces or fields for displacing the particle the fluctuat-
ing force must overcome the pinning force - dV/dX in one of the directions chosen. The shift of
the particle stops at the site where the pinning force is stronger than the random force. This
mechanism has been applied to wall motion and has provided a good understanding of the
magnetic hysteresis and well as thermal magnetic creep [6]. The thermal fluctuation of energy
must be considered otherwise : in the classical regime the fluctuating energy must overcome as
usual the potential barriers of the Wiener-Levy curve V(x) for a shift of the particle. In both cases,
the transfer mechanism induces long range displacement which cannot be handled by the standard
methods of calculating random walks. Derived from the explicit scaling approach of Alexander
et aL [1] a scaling method is made use of to set up the space-time relation in the asymptotic regime
t -+ oo. There are 3 necessary stages.

A. Consider a well of length L of the Wiener-Levy curve V(x). Calculate the most probable
variable X(L) - maximum pinning force or minimum energy - as a function of L.

B. For a long period of time t deduce from the noise the most probable fluctuating variable
Y*(t) - maximum force or energy.

C. Estimate the most probable time of escape of the well by putting X*(L) = Y*(t). This
equality provides the space-time relation L(t) for the considered random walk.

3. Thermal fluctuations of forces or fields.

In stage A, the well is built up with slopes of the Wiener-Levy potential Si aV/axi on discrete
intervals. At x = 0 and x = L, the terminal slopes - So, + SL are supposed steeper than S (a
given slope) while within the well the slopes (i = 1, 2, ..., L - 1) are such that I Si I  S. Let

G(Si) be the Gaussian probability density of variance QS

and
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the probability of finding a slope Si less than S at site i. The probability of occurrence of the well
described above with independent random slope Si is

The most probable value of the slope S * is given by the maximum of(3) :

For large L, ~(S’ *) ~ 1. The first term of the expansion of the error function (2)

gives

The last term of (5) can be considered as constant in all of the practical situations. Finally

B. Suppose that the fluctuating forces are described by Gaussian white noise in a discrete
time interval t, the probability density of which is :

Let 1m = max { I 11 I, 1 f2 1, ..., 1 1; 11. The probability of finding I f I  f.  I f + df I is given
by d~’/d~ where

1 w1

The most probable maximum value ~ ~ during the time t is given by the maximum of d~/d~
one finds for long time t :

where, as in (5), the last term can be considered as constant for practical purposes

C. The most probable time of escape from the well is estimated by writing the relation :

which gives
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Here v = ~ f/ ~s describes the ratio of the thermal fluctuations over the variance of the pinning
forces. The physical meaning is now clear : the stronger the pinning forces as compared to the
thermal fluctuations, the smaller v and consequently the confinement of the particle is stronger. As
Gaussian thermal fluctuations 6 f are proportional to T, therefore v = TIT where To is related
to the variance of the pinning forces u;.

Actually the relation (11) which gives the most probable maximum force at time t is reminiscent
of the magnetic « reptation » of ferromagnetic substances described by Neel [6]. In both situations
it is the Gaussian distribution law which gives the variation of~~ with In t. The situation which
is analysed here is that L is large but, this is not actually a strict condition for the asymptotic
regime. It is a condition rather for a simplified expression of the most probable pinning forces
edging the well. The asymptotic regime is really defined by the limit where t i~ going to infinity.
This condition is fulfilled when the exponent v is much less than 1 or, equivalently, 7~ ~&#x3E; af.
It is then a regime of strong confinement as expected, since the diffusion constant, proportional
to L2 It or t2v- 1, goes to zero as t -+ oo because v  1/2.

4. Thermal fluctuations of energy.

In stage A, the potential well of the Wiener-Levy curve is such that V(O) = V(L) and Y(x~)  V(O)
for xi E [1, L - 1 ]. The most probable depth AE* of the Wiener-Levy well is equal to : 1 /2 ~s aL
(a : step size of the space discretization). Consider now, in step B, a sequence of energies extracted
from the Boltzmann distribution law and let Em be the maximum energy of the sequence :

It is easy to get the most probable energy of a t-sequence :

which is the well-known Arrhenius law of activation. Now the most probable time of escape from
the well (step C) is obtained by the relation :

which yields

The In2 t time dependence of L is characteristic of a Sinai regime [2, 3] while T 2 indicates the
origin of the fluctuation from the thermal bath of the canonical ensemble. Very strong localization
is contained in this expression since, as the walk progresses, deeper and deeper wells are explored

5. Magnetic susceptibility and electrical conductivity.
The asymptotic space-time scaling relations are not directly measurable. But the space variable
L2 stands for the space correlation function x(O) x(t).

Let us define the power spectrum of x as : Sx(ro) by the standard relation
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combined with the asymptotic scaling relation

where r and ~, are respectively the time and space dilation factors. It is easy to obtain

Since

one gets :

One deduces from the scaling relations (12) and (16)

The frequency dependence of (23) has been derived recently by Marinari et al. [7] from similar
assumptions and is’considered as a possible source of 1 If noise. In the context of ferromagnetism,
x(t), the position of the Bloch wall is related linearly to the total magnetization of the substance.
Consequently the magnetic susceptibility X((o) is equal to :

where SM(ro) is the spectrum power of the magnetization and Do the total volume. By assuming
the proportionality between ~(c~) and Sx(ro) one gets finally the following low frequency suscep-
tibility :

The frequency dependence is then different in both cases approaching a 1/co behaviour at low
temperature (the limit T --~ 0 is out of validity of this calculation because in each case the space
variable must be asymptotically large i.e.: TTIT- &#x3E;&#x3E; 1 or T 21n2. t &#x3E; 1 for the validity of the scaling
relations (12) and ( 16)). The final divergence as 00 ~ 0 reflects the ultimate excursion of the wall
at infinity (Bloch wall cannot be anihilated anywhere in this model).

In the context of transport let us consider now a charged wall. From the general scaling hypo-
thesis of Alexander et al. [1] a simple relation can be obtained between the complex electrical
conductivity r((u) and the space-time relation :

with relations (10) and (13), one obtains immediately :
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Both kinds of conductivity vanish when co -+ 0. This is the situation expected in strong loca-
lization regime. The expression (29) is partly reminiscent of the AC hopping conductivity for
exponentially localized states as deduced from a phenomenological derivation using the Debye
theory of dielectric relaxation [8].

Finally the recurrence probability of the initial position at time t is obtained in Fourier variables.
Let Po(cc~) be the frequency development of the initial probability amplitude. The general scaling
hypothesis of Alexander et al. provides the following relation:

In table I, the corresponding relations for both types of Brownian motion are reported as well
as a resume of the main formulae of this section. It must be noticed that the frequency dependence
of the T1 - relaxation rate in a classical experiment of magnetic resonance is just proportional
to this Po(co) calculated here.

6. Discussion.

The two kinds of Brownian motions pointed out in the previous sections are very different from
the standard random walk where L is proportional to t 1/2. The existence of the random potential
of the Wiener-Levy type induced strong confinement of the particle since the exponent v is always
less than 1/2. The action of the thermal bath is different in both cases of source of fluctuations
and provides different scaling relations. Then a detailed analysis of the mechanism of noise must
be made before deciding what the most probable regime is. These two aspects cannot be reconciled
in the limit of infinite time since the thermodynamic limit of a particle immersed in a random
potential V(x) of Wiener-Levy type probably does not exist
The possibility of observation of Brownian motion of this type in ferromagnetic substances

requires that several conditions must be fulfilled
First, the Bloch wall must be postulated to be rigid and capable of displacement in one dimension

as a whole. Actually this behaviour is observed as a response to an applied magnetic field and the
model of random potential energy V(x) depending only on single variable x is usually accepted
(see for example Ref [5]). However the spontaneous Brownian motion is more questionable since
the domain wall can be displaced a part at a time by thermal fluctuations. The dynamics of these

Table I. - Low frequency OJ -+ 0 response functions for both types of Brownian motions

L : space variable; t : time variable; T : temperature of the bath; To : characteristic temperature related
to the pinning forces.
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internal modes of flexibility are usually assumed to exist at higher frequencies (spin waves) than
the transverse motion as a whole of the domain wall. Then, in the asymptotic regime of very long
time which is considered here, only the translational degree of freedom subsists and the type of one-
dimensional Brownian motion proposed here could be observable at very low frequency.
Among the two regimes of noise envisagedpreviously, the thermal fluctuating fields are more

probable for Bloch walls. In this case the characteristic exponent v = 6 f/ Qp can be analysed
more quantitatively. It was established by Neel [9] that the mean square of thermal random field
a2 is proportional to T/~2 where 0 is a characteristic volume affected by the thermal fluctuations
of the spontaneous magnetization in the domains. In fact bB1h quantities af and are measu-
rable in classical hysteresis experiments where 6 f is proportional to the after-effect relaxation
fields and p to the coercitive fields. At low temperature, standard purity and cristalline perfection
of ferromagnetic samples, the ratio a2l a2 = TITO is too small and is typically of the order of 10- 2
or 10- 3 [10] for any observation of the Brownian motion. It has been suggested [11] that near the
critical temperature this ratio increases strongly approaching a sizeable value which could be an
important factor of acceleration of this random walk and could make this motion observable.
For one-dimensional systems, large density waves could be describe by this model. Particu-

larly, the ground state of an incommensurate system can be described in terms of walls of discom-
mensuration. When these walls carry an effective charge the electrical conductivity can be of the
type indicated in table I. Well below T~, transport coefficients and particularly their frequency
dependence could be measurable and compared to the proposed theoretical formulae.
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