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Résumé. 2014 Nous avons trouvé un diagramme de phase correspondant à des structures de soliton
ancré à deux dimensions dans le cas d’une interaction répulsive u(x) entre solitons avec u"(x) &#x3E; 0.
Nous montrons que la fugacité critique de la structure de soliton commensurable est proportionnelle
à u"(l), où l est la période de cette structure.

Abstract. 2014 A phase diagram of pinned soliton structures in two dimensions has been found for a
repulsive interaction u(x) between solitons with u"(x) &#x3E; 0. The critical fugacity of the commensu-
rate soliton structure is shown to be proportional to u"(l), where l is the period of this structure.

Tome 44 N° 21 ler NOVEMBRE 1983

LE JOURNAL DE PHYSIQUE - LETTRES
J. Physique - LETTRES 44 (1983) L-865-L-870 ler NOVEMBRE 1983, ]

Classification

Physics Abstracts
05.50 - 64.60C - 75. 10H

The commensurate-incommensurate phase transition is associated with spontaneous creation
of linear defects - solitons or domain lines. In the one-dimensional case at zero temperature
the soliton pinning by a lattice leads to a complicated sequence of commensurate soliton phases [1].
The same sequence arises in an anisotropic 2D system at To 0, where solitons are linear defects
and not point defects as in the 1D case. A commensurate soliton structure in two dimensions
melts at some finite temperature. This possibility has been previously proposed by Villain [2].
The purpose of this work is to represent the phase diagram of a 2D system in the region of existence
of commensurate soliton phases.
There are two main physical realizations of our problem. The first one can be presented by

a system of soliton lines, or a system of particles placed into a weak substrate potential i.e., by
a 2D discrete Sine-Gordon model. The second possibility corresponds to a highly anisotropic
lattice gas of particles with a strong attracting interaction along the Y-axis and a repulsive inter-
action along the X-axis. Similar structures have been experimentally observed on the surfaces [211]
of W and Mo [3].
According to [4], commensurate soliton structures at T = 0 exist in the range of the chemical

potential ~ between JlCI and Jlc2’ where ~u~ 1 is defined by the vanishing of the soliton energy, and
Jlc2 is the point of a soliton depinning. When ~ ~ Jlc2 the repulsion of solitons prevails, resulting
in a continuous degree of freedom, i.e. the acoustic mode, of the soliton superstructure, whereas
at ~u~ 1  ,u  ~2 the pinning energy prevails and a soliton system can be considered.as a ID
lattice gas with the Hamiltonian
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where m is an integer labelling valleys of the pinning potential 9.Lp is the interaction energy of
solitons and nm = 0, 1 are the occupation numbers. The function 9.Lp is assumed to be positive,
convex and monotonically decreasing to zero at p - oo. 
The total set of phases at T = 0 can be described as a branching sequence (so-called « complete

devil’s staircase »). In the leading nearest-neighbour interaction one gets the principal sequence
of phase transitions versus p :

The basic structural element ~ ~ consists of solitons with separation p. At Jl = ~p,p_ 1 the
energies of phases ~ ~ and  p - 1 ) coincide. The next-nearest soliton interaction lifts this
degeneration and one finds the new dimerized phase  p - 1,~ ~ in between two « pure »
phases ( p - 1 ) and  p ). Hence, a more complicated sequence of phase transitions :

If more and more long-distance interactions are added, more bifurcations would take place
and a new phase ( A B ) would be created between any two neighbouring phases ( A ) and
 B ). We call neighbouring phases ( p -1 ) and ( p ), (~ - 1,~ ) and ( p ), but not ~ 2013 l,p ~
and ( p, p + 1 ). We denote by ( A ) the periodic structure with the elementary cell A. The
symbol ( A B ) denotes the periodic structure formed as the dimerized sequence of A and B.
For any rational concentration c = plq the corresponding periodic structure can be constructed
by expanding c into the continuous fraction [5].
The ~~(c) regions of the existence of the complicated soliton structures decrease with the

growing of their periods q(c) according to the law Ap - q‘l~"(q) (the exact formulas for 4~(c)
were derived in [6, 7]).
At T ~ 0 the fluctuation of soliton lines has to be taken into account. Let Z = exp( - EoIT)

be the fugacity of a kink on a soliton line and Eo be the energy of a kink. In the spirit of the
transfer-matrix method we shall consider the evolution of our system along the Y-direction,
playing the role of time. If Z  p - 1, one can consider the evolution of a ID system of particles
(traces of soliton lines) interacting with one another via the one-dimensional potential ~(x~ 2013 xm).
Kinks change the arrangement of particles.
For any pair of neighbours ( A ) and ( B ) in the « complete devil’s staircase » there exists

a range of ~ in the vicinity of JlA,B and a range of Z between min (ZA, Zp) and max (ZA2B, ’-- ZÃB2),
where ZA is the critical fugacity of the phase ( A ). In this range the elementary cells A and B can
be considered as new indivisible competing particles. Only kinks permutating the neighbours A B
into B A and vice versa will be taken into account. We neglect the probability of a kink between A
and A or between B and B, since the energies of the resulting excitations are too large (see Fig. 1).
We introduce a fictitious lattice with the sites occupied with either a particle A or a particle B.

Moreover, because nA + nB = 1 a spin-like description may be applied. We consider particles A
and B on the fictitious lattice as spin-down and spin-up states QZ = ± 1/2). It is convenient
to take for the vacuum state the lattice occupied at -each site by a particle A. Then the transfer-
matrix acts on the orthonormal set of vectors, describing a displacement of A- and B-particles
along the row :

The transfer-matrix is defined by its diagonal matrix elements and those off-diagonal elements
which correspond to the existence of one kink only. The appearance of a kink can be described
as the action of the operator Q ~ t 1 Qm~. For instance, acting with ~ Qm y~+~ on the sequence’ 

m

... A A A B B B ... we get ... A A B A B B ... This implies the shifting of a spin-up excitation (B)
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Fig. 1. - Particles A, B and C correspond to the structures ~ p2, p - 1 X  ~~ 2013 1 ) and ~ p3, p - 1 ),
only A and B being competing ones among these. The kinks, depicted in the l.h.s. of this figure are allowed
ones, the other one (r.h.s.) transforming the sequence A A into C B is not allowed, because the self-energy of
C-particule is too large. Structures of fictitious lattices are also presented.

by one site to the left on a fictitious lattice. Our approach is a slightly modified version of that
used in the Pokrovsky-Talapov model near the C-1 transition [2], in the 2D ANNNI model [8],
and in the asymmetric clock model [9]. Villain and Bak [8] also introduced the fictitious lattice,
but their « particles » or « fermions » were domain walls + + + ..., rather than « par-
ticles » we have introduced above.

Dislocations in our treatment are described by the following row-to-row configuration :

If the length I of particles in a real lattice exceeds 2 dislocations are irrelevant. Here we assume 1
to be a large quantity.
The Hamiltonian corresponding to the transfer-matrix has the following form :

where

Here lA and 1B are the periods of the  A &#x3E; and  B &#x3E; phases. Obviously, lAB = lA + lB.
The first term in the r.h.s. of equation 2 corresponds to the migration of soliton lines, the second

term describes a small difference of the energy of the particles A and B at zero temperature, the
third term represents the interaction between the neighbouring particles in the fictitious lattice.
Hamiltonian (2) is exactly the Hamiltonian of the XXZ-model in an external magnetic field.

Using the well-known properties of the XXZ-model [10,11] we obtain the critical fugacity of the
phase ( A B &#x3E; :

and the equation of the phase boundary near the critical point Z = ZAB, hc = 0 :
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The phase boundary of the commensurate phase  A ) « B ~ ) is defined by the equation :

Between all these boundaries an incommensurate _phase lAB consisting of particles A and B
is stable. Its origin and properties are the same as those for any 2D incommensurate phase. Parti-
cularly, the shift of a Bragg peak corresponding to the soliton superstructure is proportional
to ~ ~ - PA(B)(T) 11/2 or 1 h - hA(B)(Z) 11/2 [12]. All the incommensurate phases transform
continuously one into another. The schematic picture of the phase diagram between phases
 A &#x3E; and  B &#x3E; is shown in figure 2.

Fig. 2. - Typical fragment of the « complete devil’s staircase » is shown. This looks like the phase diagran
presented in [13].

For the structure of the type  A" B ) or  A B" ) with large k and with solitons interacting
with one another via a power-like potential the consideration has to be modified slightly, since
the critical fugacities of the sets consisting of different phases  A" B ~,  A"’ B ~, etc., are
close. In the vicinity of the critical point of the phase  Ale B ) only the « particles » A~ B, Ak+ 1 B
and A "-1 B have to be considered. The problem can be reduced to the investigation of the Hamil-
tonian of planar magnet with the spin S = 1 in the external magnetic field,



L-8692-D COMMENSURATE SOLITON STRUCTURES

The same consideration can be applied to the sequence of the main commensurate phases  p &#x3E;
even in the case of an exponential decay of the particle interaction. This problem (at a zero magne-
tic field) has been considered in [14, 15]. The 1D quantum spin-1 model with Hamiltonian (7)
has been shown to be equivalent to the 2D classical X Y model. Including the external magnetic
field one obtains the region of commensurate and incommensurate phases similar to figure 2.
The critical behaviour remains almost the same as before.
The general phase diagram is schematically depicted in figure 3. For definiteness, we put the

period po of the initial commensurate (solitonless) phase equal to 2. The phase diagram consists
of an infinite number of peaks, corresponding to different commensurate soliton structures.
The width AM of a peak decreases as q’lL"(q) and the critical fugacity Z ~ decreases as ~"(q )
with an increase of the period q. The critical temperature 7~) behaves as [In ‘Lh" (q )~ -1.

Fig. 3. - Phase diagram for an overlayer with the period po = 2 along the X-axis. The commensurate,
liquid and incommensurate phases are denoted as C, L and IC; respectively. The location of a region of
liquid phase can be explained by the approach presented in [8,16].

Any bifurcation of the commensurate phases can be represented as a scaling transformation
of the phase diagram, as is shown in figure 2. The scaling picture is complete, since the critical
behaviour is the same near any critical curve. In such a system phase transitions at zero tempe-
rature have been shown to be continuous and to take place at points of a Cantor set along the
p-axis. This Cantor set of points turns into a set of ranges associated with the incommensurate
phase at any finite temperature.
We have also calculated the structure factor S(k) of the incommensurate phase 1~

for an interpretation of the X-ray and neutron scattering patterns. It is given by

where k is assumed to be close to some Bragg vector ko and ~k = k - ko is assumed to be directed
along X-axis for the sake of simplicity, y is the critical exponent of the energy operator for the
8-vertex model given by the expression [17] :
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The dependence of the exponent ~ on y is substantial only in a close vicinity of the critical point
(Z ~ Z~, ~ % 0). Far from this point the exponent y = 1 in agreement with the results obtained
by Schulz, den Nijs and others.
The Bragg vector set ko for the incommensurate structures is defined by the following equations

The detailed version will be published elsewhere.
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