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Résumé. — Nous avons mesuré la température critique résistive T, d’un réseau régulier 4 deux dimen-
sions en nid d’abeilles d’indium supraconducteur sous faible champ magnétique. Nous observons des
oscillations de T, de période égale a un quantum de flux (¢, = hc/2e) par cellule du réseau. Des
structures bien définies apparaissent aussi aux valeurs rationnelles du flux réduit ¢/¢, = 1/3 et 2/3.
Ces résultats sont comparés aux prédictions théoriques pour la ligne critique (H, T) du réseau étudié.

Abstract. — We have measured the resistive critical temperature T, of a regular two dimensional
network of superconducting indium at low magnetic fields. We find T, oscillations with a period
equal to one quantum flux ¢, = hc/2e per lattice cell. Well-defined structures also appear at the
rational values of the reduced flux ¢/¢, = 1/3 and 2/3. These results are compared with theoretical
predictions for the (H, T) critical line of the studied network.

The attractive properties of superconducting networks in a magnetic field have stimulated
extensive theoretical studies in the last two years. The magnetic properties of such networks are
expected to be very sensitive to the topology, and particularly to the connectedness of the multiply
connected structure. The networks considered fall in three categories : simple finite geometries [1-
3], infinite regular lattices [4, 5] and disordered structures [4, 6]. Up to now only two extreme
cases have been investigated experimentally. The first corresponds to the single loop geometry
considered in the original experiment of Little and Parks [7]. The second is given by the recent
study of granular superconductors by Deutscher et al. [8], and represents the disordered structure
situation. Besides these two extreme situations, extended periodic networks have not received
much attention in the past, despite of the richness of the theoretically predicted phase diagram [4,
5]. Josephson junction arrays are expected to bear the same physics, but seem to involve more
complicated behaviours [9]. One of the attractive properties of regular networks is the occurrence
of dips predicted theoretically in the upper critical field H (T). Profound depressions are expected
at rational values of the reduced flux ¢/¢, which correspond to flux quantization phenomena
in these networks, and regular organization of vortices inside the structure (¢, = hc/2e is the
quantum flux). In this letter, we report an experimental and theoretical study of the crifical line
H_(T) for a two dimensional honeycomb network made of submicron indium wires. Our experi-
mental results demonstrate the above flux quantization phenomenon as predicted by the solution
of linearized Ginzburg-Landau equations.

Samples were prepared by thermal evaporation of pure indium (5 N grade) film onto the polish-
ed surface of a microchannel glass plate. The plate is made with a lattice of close-packed parallel
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hollow glass fibres. The studied network is simply obtained by direct deposition of the metal
at the edge of the glass walls. We have investigated networks of indium wires, 1 000 A thick,
of width ~ 4 000 A (as defined by the glass wall thickness) obtained by this method on a honey-
comb lattice of period ~ 2.4 um. For measurements, electrical contacts were made by evaporation
of thick indium pads through a metal mask which defined the overall size of the network : length
500 pm, width 430 pm. The studied network contains ~ 200 x 150 elementary hexagonal loops.
Resistance measurements were performed by using a 4-probe bridge with typical bias current of
4 pA. The normal resistance at 4.2 Kis R, = 0.67 Q.

The upper critical line H (T) obtained directly from a X-Y recorder is shown in figure 1. In
this measurement, the temperature of the sample was monitored in order to keep the resistance of
the indium network at a constant value (0.2 Q). The horizontal signal is the temperature measured
by a carbon resistor [10] corresponding to a scanning of the magnetic field axis. As can be seen,
a non monotonic phase boundary is observed, with a succession of cusps appearing at periodic
values of the magnetic field. This modulation, of period AH = 3.62 Oe corresponds to one quantum
flux ¢, per elementary hexagonal loop in the network. This modulation reflects the effect of one
loop quantization phenomena similar to that of Little and Parks [7]. The enclosed area inside
elementary loops, estimated from this magnetic period, is found 5.72 um? and corresponds to
hexagonal cells of side a = 1.48 pm. This value is closed to that extracted from S.E.M. micro-
graphs :a = 1.4 + 0.2 um. The envelope of the observed modulation represents the change of the
critical field of the strands, varying as H,, 4/d ~ (T, — T)'/?. Here H,, denotes the thermodyna-
mical critical field, A is the penetration depth, d the width of the strands and T, the bulk critical
temperature of indium at zero field.

The data shown in figure 1 call for the following comments, all reflecting a network behaviour.
For this it is useful to compare the shape of the observed modulation with that of the one-loop-
geometry shown in the insert and obtained for the same material. First of all, the initial slope
dH/dT at zero field is finite for the network and infinite for the one-loop-geometry. Secondly, the
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Fig. 1. — Critical line (H, T) of a regular honeycomb network of superconducting indium, defined as explain-
ed in the text. The arrows indicate the value of the magnetic field corresponding to one quantum flux ¢, =
hc/2e per elementary loop of the lattice. For comparison, the insert shows the critical line for an indium
hollow cylinder of 1 000 A thickness evaporated on a 3.3 um diameter quartz fibre. Comparison of absolute
values of the temperatures is meaningless [10].
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observed cusps at half integer values of the reduced flux ¢/¢,, in the one-loop-geometry disappear
in the network case. New cusps occurring at integer values of ¢/¢, take place in the latter case.
Note, in addition, the inversion of the concavity of the modulation. Finally, new well defined
structures (see Fig. 2) appear in the network geometry and were absent in the one-loop case. All
these features show a collective behaviour, as will be shown theoretically below, in the network
geometry.
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Fig. 2. — Plot of the resistance R as function of the applied magnetic field in the range 0 < ¢ < ¢, close
to the bulk critical temperature T,. In addition to the fundamental dip at ¢ = ¢, the secondary dips at
¢ = ¢/3 and 2 ¢/3 are indicated by the corresponding arrows. Less marked dips are also observed at
other well defined value of the reduced flux. The insert shows the honeycomb structure.

In order to study the new structures on the H (7)) line, a magnified view of the first period is
shown in figure 2. In this figure, we have reported directly the measured resistance R as function of
the magnetic field at fixed temperature. The width of the superconducting transition in zero field
is larger (~ 10~2 K) than the amplitude of the T, oscillations. Therefore, this curve is equivalent
of the H (T) plot of figure 1 as far as R(T) remains linear, which is strictly true in the region of
our interest. This procedure provides an improved resolution, up to ~ 10™* K, well sufficient to
distinguish the relevant physical features. One of the salient features seen in figure 2 is the occur-
rence of well defined dips, particularly at ¢/¢, = 1/3 and 2/3 symmetrically located around
¢/do = 1/2. Furthermore, other reproductible well defined structures appear also at other values
of ¢/¢,, and will be discussed more extensively in a forthcoming paper [11]. Note however that
the expected dip at ¢/¢, = 1/2 is not seen in figure 2. From the modulation amplitude we can
estimate [11] the value of the coherence length & (T = 0). The obtained value is ~ 1 000 A which
is reasonable value for thin superconducting indium.

The basic concepts of treating superconducting network near the second order phase boundary
go back to Alexander [4] and de Gennes [1]. The linearized Ginzburg-Landau equation leads in
general to an eigenvalue problem which is best expressed in terms of the order parameter values
at the nodes. If node o is linked to n nodes via strands of length L,; (8 = 1 to n), the basic equation,
at node « may be written :

n L _i'Vaﬂ
5 (_ 4, cotget 4 4, <" )=o 1)
=1 és sin-L—“”l
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p
where 4, is the value of the order parameter at node f, and y,; = 2n f A dl s the circulation of
Y a
the vector potential along the strand linking o and .
For a regular lattice (square, triangular, honeycomb, ...), where L,; = a is the same for all

strands, equation 1 reduces to
a i
(z cos C_) A, =) Age 1 ()
s B

where z denotes the coordination of the lattice. Thus, the problem reduces to that of Landau level
structure of a free-electron gas in the same geometry. The energy of Bloch electrons is given by
a
Cs
the square and triangular lattices. As pointed out by Alexander [4], the upper critical field of the
superconducting network is given by the band edge of the spectrum of equation 2. For a honey-
comb lattice (z = 3), there are no eigenyalues outside the range : — 3 < & < 3, and the spectrum

¢ = z cos . The spectrum associated with equation 2 has been studied in great detail [12] for

L . ) a*\/3 . .
shows invariance properties in ¢ and y = 2 na—, where ¢ = H x 6 X 7 s the magnetic
V]

flux through the elementary hexagonal loop of side a.
For small y we can calculate the position of the band edge by using a continuum approximation.
The result is simply :

; QPP €)
2/3
In the limit y < 1, the corrections to (3) are exponentially small and

_ %

H ~—
c2 néf

“)

which is valid only at a/£, < 1, i.e. continuum result.

The whole spectrum of (2) for a honeycomb lattice can be calculated following a procedure
similar to that used for the square and the triangular lattices. For convenience we choose a Landau
gauge

A, =0, A,=0, A, =H,. %)
The elementary cell contains two sites A and B and two equations 2 are to be considered. A

rather cumbersome algebra, to be reported elsewhere [13], leads finally to the following diffe-
rence equation :

(e = 3)y; = 2cos[-;-(i +-;—> + d:ll/lH,l + 2cos|i§<i —%) + “}//.-—1 +
+ ZCos[y<i +%) + 2a]|//i ©)

where a denotes a Floquet factor. The energy spectrum of equation 6 is quite complex, and the
rationality of ¢/¢, plays an essential role.

The calculation can only be performed for rational ¢/¢,. For ¢/d, = p/q (p, q integers prime
to each other), (6) reduces to g independent linear equations.
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In general, the associated determinantal equation takes the following form :
P(A)+W=0 )

where W takes its values in [— 3, 6] and P,(4) denotes a polynomial of degree g in 4 = ¢* — 3.

In figure 3, we have shown only the band edge of the spectrum, corresponding to values of g
up to g = 15. As can be seen, this graph displays the same striking pattern, as for the square and
triangular lattices. At low field values, we recover the continuum limit result (Eq. 3) as expected.
The irregular line so obtained shows pronounced dips at ¢/¢, = 1/2, 1/3, 2/5, ... etc. and must be
compared with figure 2.
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Fig. 3. — Calculated values of the reduced variable ¢ = 3 cos a/, as function of the reduced flux ¢/¢,.
Here a denotes the length of a side of the hexagonal cell and £, is the temperature dependent superconducting
coherence length. Different points correspond to rational values of ¢/¢, = p/q with g < 15. Noticeable
dips appear at ¢/, = 1/3, 2/5, 1/2, 3/5, 2/3, ... etc... As can be seen the more pronounced depressions are at
1/3 and 2/3. For a/, < 1 this curve represents the variation of AT /T, and must be compared with figure 2.

Other less marked dips occur also at other rational values of ¢/¢,. In contrast with the square
lattice case [12], the more pronounced dips occur at ¢/¢, = 1/3, 2/3 instead of ¢/p, = 1/2.
This peculiar behaviour is intimately related to the topology of the honeycomb lattice and com-
pares very well to the experimental result. The origin of this behaviour is associated to the nature
of the dual lattice in each case. Rational values of the reduced flux ¢/¢, correspond to a regular
organization of vortices on the dual lattice ; and are responsible for the lowering of the magnetic
energy. The dual of the honeycomb (i.e., triangular lattice) is more frustrating than that (i.e.,
square) of the square lattice.

In conclusion, we have reported in this letter the first experimental study of the (H, T) phase
diagram of a superconducting network. Flux quantization at integer values of ¢/¢, has been
observed, as expected. In addition, other quantizations have been discovered at the rational
values ¢/¢, = 1/3 and 2/3 in agreement with the theoretical analysis. Quantization at other
rational values of the reduced flux such as 1/2, 2/5, 3/5, ... are predicted to produce weaker depres-
sion of the line (H, T) and deserve more accurate measurements, nOW in progress.
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