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Résumé. 2014 Nous analysons la croissance d’un polymère complètement ramifié, basé sur des branche-
ments amine tertiaire reliés par des segments flexibles de P monomères. La méthode est une version

adaptée du champ « self consistent » de S. F. Edwards. Nous trouvons que la croissance en chou-fleur
idéal (sans fonctions amine secondaire résiduelles) est limitée à un nombre de générations m ~ m1
où m1 ~ 2,88(ln P + 1,5). Ceci correspond à un rayon limite spatial R1 linéaire en P. Bien en dessous
de la limite, le rayon R(M) varie avec la masse moléculaire M comme M0,2. Au-delà de la limite on
attend des structures compactes (R ~ M0,33).

Abstract. 2014 We discuss the growth of completely branched polymer, based on tertiary amine branch
points conected by flexible linear portions (« spacers ») each of P monomers. The method
is a modified version of the Edwards self consistent fields. We find that ideal « starburst » growth
(without any residual secondary amine functions) is restricted to a number of generations m ~ m1
where m1 ~ 2.88(ln P + 1.5). This corresponds in space to a limiting radius R1 which increases linearly
with P. Well below this limit, the polymer radius R(M), plotted as a function of molecular weight
M, should increase like M0.2. Above the limit (R &#x3E; R1) we expect compact structures (R ~ M0.33).
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1. Aims and methods.

Recently D. A. Tomalia et al. [1] have performed a sequential construction of branched polymers
(Fig. 1) where (in principle) each generation (m) is fully reacted before proceeding to the next
(m + 1). Within a few generations (m  5) this leads to a very compact object, with very little
polydispersity, which they have called a « starburst » polymer (1 ). Typical molecular weights are of
order 30,000, and the whole structure is reminiscent of a globular protein. Variants from this basic
scheme may allow for rigid stereospecific sites near the surface, and may be of practical interest.
Our aim in the present note is much more modest, and purely theoretical : clearly the expo-

nential growth described in figure 1 cannot persist indefinitely because of steric hindrance. Thus
there must exist a limiting generation number (m,) or radius (R,), or molecular weight (M,),
beyond which the starburst structure becomes imperfect : not all the amine functions can be
tertiary and certain secondary amine functions must be present. If the spacer is very short, one may
estimate m. from a construction on a suitable periodic lattice, with coordination number 3 on
each site. We are interested here in the opposite limit, where the spacer is relatively long, and
flexible : for instance an aliphatic chain with a number P of carbon atoms. We expect that large P

(1) Some scientists prefer « Cauliflower Polymer ».
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Fig. 1. - Chemical structure of a starburst molecule with 2 generations. In the structures realized by
Tomalia et al. the spacer usually contains 4 aliphatic carbons and an amide group.

would allow for higher starburst limits M1, and we want to predict, at least qualitatively, the
dependence of M1 on P.
We also want to ascertain what is the structure of the starburst molecules below threshold

(M  M1); what is, for instance, their density profile 0(r). (Here 0 is the local polymer fraction
and r is the distance from the centre). We assume that :

a) the solvent is very good (athermal);
b) at each generation the system is fully reacted : no secondary amine functions present (we

remove this restriction in the appendix);
c) the spacers are long, so that the detailed structure of the bonds near any tertiary amine are not

relevant. This is not fully achieved for the actual Tomalia systems, but is a natural starting point ;
d) the cross links (N) are chemically not too different from the spacer (no strong segregation

trends).

Physically, the main effect which we have in mind is the following : near the centre the spacers
may behave like flexible coils, but in the outer region they must be elongated, thus allowing for an
increased radius and preventing too high densities.
The two basic components of the free energy are then : a) an intermonomer repulsion ; b) the

elasticity of the spacers. The competition between a) and b) can be treated very naturally by the
Edwards self consistent field method [2]. Indeed, for these rather compact systems, the self consis-
tent field approach should be unusually good. There are two numerical complications in our case :

(i) the densities are high (Ø ’" 1) : the simplifications found in semi dilute solutions do not
apply;

(ii) the spacers are strongly elongated : they cannot be described in terms of harmonic springs.
Both (i) and (ii) lead to consequences which are somewhat sensitive to the detailed structure of

the chains. In the present work, we incorporate (i) through a Flory-Huggins structure for the
entropy of mixing, and (ii) by assuming a freely jointed chain (P units of length a) for each spacer.

Fortunately, when we discuss the inner core of a starburst molecule we find that in this region
~ (r) is still rather small and that the elongations are not too large : thus, for the core region, our
results are relatively insensitive to the complications (i) and (ii).
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2. Self consistent fields.

2. 1 THE FORCE EQUATION. - Our starting point is the balance of forces displayed on figure 2.
We consider one of the cross links belonging to the m-th generation at a distance r(m) from the
centre. This cross link is subjected to :
- an interaction force F, pointing inwards, due to the concentration gradient d~/dr,
- three elastic forces f1, f2, f3 due to the 3 spacers which are attached to the cross link. All these

forces are radial on the average.

Fig. 2. - The balance of forces at one junction point inside the structure fl, fi, f3 are elastic forces, while F
is due to the concentration gradient.

We derive F from a Flory-Huggins form of the free energy f [3]. Our chains are inscribed on a
cubic lattice of mesh size a (volume per monomer a3 ). Since we assume an athermal solvent,
we are left with only one contribution, from the entropy of mixing :

The free energy per spacer is Pf.
The resulting force per cross link is

The factor 2 P expresses that, when we add one node, we add two spacers (2 ) : note the difference
with a periodic lattice, where each node would be associated with 3 P/2 monomers.

Let us now analyse the elastic forces. We shall first treat the spacers as harmonic springs (since
this is easier to grasp) and later introduce the anharmonic corrections.
For a weakly elongated, freely jointed chain of P segments each of length a, with end points

rm and r., 1, we have an elastic force

where we neglect derivatives of order higher than d/dm. To this level we have fi = - f2 and the
total elastic force is simply

(2 ) We ignore the difference between 2 P and 2 P + 1, i.e. the junction volume.
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(This is strikingly different from the Edwards equation for linear chains : in the linear case each
node is subjected to two elastic forces only; there is no contribution of order ~r/~ and the leading
term is ~ o2r / om2 .)

Let us now balance (4) against (2) : we obtain

Finally, let us generalize equation (5) to strong deformations (dr/dyM ~ Pa). For a freely jointed
chain, the result can be written in terms of a Langevin function [4]

C ~, --- cotanh ~, - 
1 

6~) A 9 (6)

Equation (5) now takes the improved form

Note that, since C(~) ~ 1, the elongation dr/dm is always below it’s value for complete stretch-
ing (Pa).

2. 2 COUNTING GENERATIONS. - Let us call v (m) the number of cross links achieved after m gene-
rations v(m) = 3.2m-1 + 1 ~ 3.2m-1. Going to a continuous notation we may write

We insert in (8) the form (5’) for dr/dm, and differentiate both sides of (8) with respect to r, obtain-
ing

Returning to the definition (7) of ~, we see that a natural dimensionless variable is p = r/(Pa~
and we rewrite (10) in the form

Equations (11) are the basic, non linear, equations for ideal starburst growth.
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3. Results.

3. 1 SCALING FORM OF THE LIMITING RADIUS. - The parameter P has dropped out of equations ( 11 ).
As we shall see these equations lead to pure starburst growth for p smaller than a certain limit pl,
which is a pure number ~ ~ 4. Thus the limiting radius Rl must be of the form

RI = (const.) Pa("-_r 5 Pa) (12)

and is proportionnal to the extended length (Pa) of the spacers. (In Eq. (12) we have inserted the
numerical value of the constant, derived from Eq. (21) below.)

3.2 BEHAVIOUR IN THE CORE REGION. - We consider first the region p  PI : here, as we shall
see, the polymer volume fraction 0(r) is much smaller than unity, and equations (11) may be
reduced to a simpler form. Observing that C(~) -+ ~/3 for ~ ~ 1 we get :

This has the solution

Thus we expect a parabolic density profile in the core region. It is natural to expect that 4&#x3E; be
small at small p. Of course, the physical ~ does not vanish exactly at the centre. This feature could
be improved if we considered each generation (and in particular m = 0) separately, i.e. if we did
not make the m variable continuous. But we expect the corrections to be important only in a
region comparable to the coil size of an unstretched spacer : r ~ p 112 a, or p ~ P -1~2. Thus, in
our limit of large P, the correction is probablv not essential.

3.3 COMPLETE PROFILE AND STARBURST LIMIT. - We have integrated numerically the non linear,
second order differential equations (11) for ~(p), starting from the parabolic form (14) near the

Fig. 3. - Concentration profile in starburst molecules. Notice the parabolic form at small distances p,
and the stopping point at p = pl = 4.1. Because of the -NH2 groups present at the last generation, the
physical limiting radius Rl is somewhat larger than Papi : see equation (21).
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origin. The concentration increases with p, and reaches its limiting value 4&#x3E; = 1 at a finite dis-
tance (Fig. 3). The limit is (3 )

At p &#x3E; p, the starburst process cannot continue : some nitrogen must remain in the form of
secondary (or primary) amines. It is of interest to translate the limit PI in terms of a number of
generations ml.
Making use of equation (8) we find

The result is

3.4 RELATION BETWEEN RADIUS R AND MOLECULAR WEIGHT M. - Let us stop the growth process
after a certain number of generations m (  ml ). The radius r(m) gives us the position of the last
tertiary amines N as shown on figure 2. The polymer radius is related to the position of the NH2
groups, and is R ~ r(m + 1). The total number of tertiary amines is

The central nitrogen carries 3 branches; all other tertiary amines carry 2 branches. Thus the total
molecular weight is

where MN (= 14) is the molecular weight of the cross link, PMo the molecular weight of one
spacer, and we have assumed PMo ~&#x3E; MN. Then

while the polymer radius is

(3) The mathematical singularity may be located somewhat beyond the value quoted in equation (15) :
the accuracy of our integration (based on a pitch Ap = 10-2) is not sufficient to describe the region p &#x3E; 4
in detail. But physically the value (15) is indeed the value at which 0(p) saturates.
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Going blindly to the continuum limit, we might be tempted to write p(m + 1) ~ p(m). However,
because the elongations are strong near the starburst limit, it is preferable to keep the correction,
and to write

where we have made use of equation (9). From the numerical solution 4J(P) of the self consistent
field equations, one can then construct, for a given p(m), the corresponding value of M/P 3 Mo
via equation (20), and of R/(Pa) via equation (21). The resulting plot of R(M) is shown on figure 4.

a) In the core region, where ~(p) ~ p2 (Eq. 14) we have

and

Thus

and the radius increases like MO.2.

b) At the starburst limit (p(m) = PI) we find a certain molecular weight MI

and a limiting radius Rt,

Thus, if we consider different starburst limits, with different spacer lengths P, we expect to fmd
for the series

The uncertainties in all these formulae originate in the uncertainty for the limiting value of PI
(Eq. (15)). This could easily be improved by more precise numerical integration of equations (11)
but, in view of the very crude nature of the model, this improvement could not be really meaningful.

4. Discussion.

The main (and rather obvious) conclusion is that the « starburst » type of growth can exist only
for a finite number df generations m ~ y~. The limit m, is an increasing function of spacer length
(Eq. (17)). For molecules below the limit, the predicted relation between molecular weight and
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Fig. 4. - Relation between molecular weight M and radius R for starburst molecules with spacers of P
monomers and extended length Pa.

size is displayed on figure 4. This plot does not lead to a very clear cut exponent (except in the
early stages M C M~. Unpublished results by Tomalia et al. on the specific viscosity [1] suggest
R(M) - MO.4, while our predictions are R ~ MO.2 at low M and R ~ MO.33 beyond the
starburst limit (the latter corresponding to a growth at constant density).
We expect the starburst structures to be somewhat flexible in the early stages (m  mi) but

quite rigid (at least in their outer surface) when m = mi. For many chemical applications where a
stereospecific surface site is described, it may be preferable to work at m ~ mi.
The present calculation suffers from many defects. In particular, our replacement of the discrete

generation index by a continuous variable m is not very good for these strongly elongated struc-
tures. The whole scheme becomes meaningful only for rather large values of P (and thus of ml )
which are not desirable in practice. But certain qualitative features. concerning the core structure
and the starburst limit, are probably meaningful.

Similar calculations could of course be performed for different geometries : e.g. when the
initiator is not single, but when we have a strong of initiators equally spaced on a linear polymer
(or when we initiate from a flat surface). These calculations will imply the introduction of an extra
parameter (the initiator density) and will be more complex : the early stages of growth are still 3
dimensional but the late stages become 2 dimensional (or one dimensional depending on the
case at hand). In the cross over region the starburst surface shows some interesting cusps, which
may become a natural locus for stereo chemically active sites.
Our discussion assumed that the reactive functions at each generation were fully saturated.

Actually, even with high concentrations of reactants, this need not hold when we reach values of
m slightly below m 1. These situations of partial saturation can be analysed by similar methods,
described in the appendix.
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Appendix : Incomplete reactions.

All the above discussion assumed that, at each step, the amine function -NH2 were completely
substituted NH2 -+ NR2. We shall now briefly discuss the modifications occurring when this is
not exactly true : consider one of the hydrogens from the -NH~ function, and call p its probability
of having been reacted. In dilute solution we might write

where c is the concentration of reactant R in solution, and k an equilibrium constant. In our
growing molecule, we may assume that k is reduced by steric hindrance

where f(O) = 1 and /(1) = 0. The complete structure of f(cp) will depend on stereochemical
details, but for many qualitative purposes we might simply assume f(cp) = 1 - 0. Substitut-
ing (A. 2) into (A. 1) we may write

where z = kc is assumed fixed (and large). Let us now consider simultaneously the two H func-
tions of one -NH2 group, and assume (for simplicity) that they are independent. Then the pro-
bability for complete reaction is

while the probability for a single reaction is

The average growth ratio g(~) at one generation is thus

We can now use this value in our generation counting, replacing equation (8) by

and equations (11) are then transformed into

The main effect is then to eliminate the singularity of 0(p) at p = pl. The profile 4)(p) becomes
continuous and saturates (to 0 = 1) only when p -~ oo. Thus the existence of a finite reaction
level (finite z) gives a certain width to the starburst limit. But for high z the results are practically
unchanged.
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