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Résumé. — Nous calculons ’énergie de cohésion d’un réseau de chaines métalliques en la dévelop-
pant par rapport i 'interaction coulombienne, supposée petite par rapport aux intégrales de transfert
intrachaines. Ce développement contient les interactions de Van der Waals, associées aux polarisabi-
lités métalliques des chaines. Pour un couplage interchaine suffisamment fort (mais en supposant les
termes de diffusion vers I’arriére négligeables par rapport a ceux de diffusion avant), I’énergie de Van
der Waals, gagnée en passant du réseau HMTTF-TCNQ au réseau TTF-TCNQ, est comparable
a la perte correspondante de I’énergie de Madelung associée a la distribution homogeéne des charges
le long des chaines.

Abstract. — The cohesive energy of a lattice of metallic chains is calculated as a perturbation expan-
sion of the Coulomb interaction, which is assumed small relative to the intrachain overlap integrals.
The expansion contains the Van der Waals like interactions associated with the metallic polarizabi-
lities of the chains. For sufficiently large forward interchain coupling (backward contribution neglect-
ed), the Van der Waals energy gained on going from the HMTTF-TCNQ to TTF-TCNQ lattice
competes with the corresponding loss of the Madelung energy of the charges homogeneously distri-
buted along the chains.

Organic metals belonging to the TTF-TCNQ family which have been extensively studied in
recent years crystallize in a segregated stack structure [1]. Like molecules TTF or HMTTF (F)
and TCNQ (Q) form conducting chains along the b-axis. The organization of the chains in the
a-c plane differs however according to the material. E.g. figure 1a shows schematically the a-c
plane in TTF-TCNQ and figure 15 the same plane in HMTTF-TCNQ. Due to the transfer [2, 3]
of a fractional number p of electrons per donor or acceptor molecule (p & 0.6-0.7) the chains
are charged. This charge is evenly distributed along the chain in the metallic phase, but at low

enough temperatures (10-10 2K) the 2 kg, 4 k; modulations (CDWs) may appear [2, 3] (kF = 11—: P

The condensation of these superstructures has little or no effect on the charge transfer (i.e. on k)
itself [2, 3] and on the lattice parameters [4].

In most previous attempts to understand the occurrence of the segregated stack structures
attention was focused on the balance between the ionization — affinity energy E,;, and the
Madelung energy E,, [5, 6]. It turned out [5, 6] that with an homogeneous charge distribution
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Fig. 1. — Schematic packing of chains in the TTF-TCNQ (a) and HMTTF-TCNQ (b) structure.

along the chain the energy gain E,, was insufficient to offset the loss E,,. This energy imbalance
may be improved by assuming [7, 8] that the transfered charges are not uniformly distributed,
but form Wigner lattices along the chains. However, it should be realized that these lattices
represent extreme cases of the 2 kg, 4 k. CDWs. If their formation were responsible for the stabi-
lity of the charge transfer, their disappearance at low temperatures should be accompanied by
significant variations of the charge transfer (i.e. of 2 k) and of the lattice parameters. This is at
variance with the experimental results mentioned above. Besides, arguments based solely on the
Madelung and the ionization energies should lead to full charge alternation in all directions (i.e.
to the Q-F alternation). A different mechanism is therefore required to understand the stability
of the segregated stack structures.

In this respect Friedel has pointed out [9] that the dispersive forces (Van der Waals interactions,
interactions of permanent dipoles etc.) favour the close packing of like molecules. His argument
can be reproduced in a few words : consider [10] the two molecular distributions of figures 14, b.
Going from figure 1b to figure la involves replacing the two Q-F bonds by a Q-Q and an F-F
bond. Assume for example that those are the Van der Waals (VdW) bonds. Keeping all other
parameters constant and using the London approximation for the Van der Waals energy, the
corresponding energy change is

AEy4w ~ 2aqap — (ag + of) = — (g — 2p)* S 0, (1)

as required. Here «’s denote the polarizabilities of the Q, F molecules. )

The argument (1), if carried to its extreme, leads to the full Q-F segregation. As the opposite
extreme (full Q-F alternation) follows from the Madelung argument, it is tempting to attribute
the observed lattices to the fine balance between the dispersive and the Madelung forces : in con-
trast to the Madelung forces the VAW forces prefer the TTF-TCNQ lattice of figure 1a to the
HMTTF-TCNQ lattice of figure 1b. Unfortunately, the homogeneous charge distribution along
the chain is not a natural consequence of the model based exclusively on these two types of forces.
First, the molecular polarizabilities seem to be too small to make the cohesive energy of this
structure positive [7]. Second, the model tends to prefer the formation of the strong Wigner
lattices along the chain to the homogeneous charge distribution.

On the other hand, the homogeneous charge distribution is a natural ingredient of the model
of metallic chains. Although widely accepted in the description of the low temperature pro-
perties [11-13], this model was not previously considered successful [5, 6] in the evaluations of the
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cohesive energy. The reason is that the band energy Eg tends to be small with respect to E;,.
However, we wish to point out here that there are other energy contributions arising from the
metallic chains, which favour the observed lattices. In particular, we will show that the metallic
chains act as polarizable units and the notion of VdW interactions between chains can be retained.
The organization of the a-c plane in thus still covered by Friedel’s equation (1), upon identifying
the o’s with the polarizabilities of the metallic chains.

The condition for the validity of equation (1) in such an interpretation is that the interchain
interactions are weak. Unfortunately, this requirement is not very well fulfilled in the actual
materials. The Coulomb forces are long ranged, i.e. of the same order of magnitude within and
between the chains. Their order of magnitude can be estimated [13] from the intra-band plasmon
frequency w,,. As the latter turns out to be of the same order of magnitude as the band-width [14],
we are encountering the intermediate coupling regime. Nevertheless, in order to conserve expli-
citly the attractive features associated with equation (1) we shall scale down all the interactions,
rather than assume artificially that only the interchain couplings are weak. Solving the weak
coupling problem we shall see that it is physically reasonable to extrapolate the results to mode-
rate couplings.

The method which bridges best between weak and strong coupling limit is the tight-binding
(TB) method [15, 16]). From the point of view of Coulomb forces this method is related [16] to
the Wigner-Seitz (W-S) approach [17]. The TB wave-functions satisfy the W-S boundary condi-
tions and are calculated on each site with the appropriate ionic potential. Thereby they tend to
anticipate the results of the RPA calculation [17].

In the TB/W-S scheme the cohesive energy is decomposed as

Ec = E, + Egc + Eg + Egpg + Eyp + Ecog - )

E,, and Eg have been already defined. Eg. involves all the energies not related to the band forma-
tion and the charge transfer (includes e.g. « steric » effects). Eggg is the self-energy of the valence
charge on the site. It brings us back from the W-S to the Hartree scheme, which is the usual start-
ing point for the calculation of the Hartree-Fock energy E, and the correlation energy Eoog.
In ordinary metals the two last terms in equation (2) roughly cancel out Egg, justifying the use
of the « single electron » W-S term Ejg [17]. The situation is somewhat different here. Egg, is the
local (on-site, on-molecule) term, whereas Ey and Eqog contain the interchain terms, which we
believe to be responsible for the choice between the two lattices in figure 1.

A few low-order diagrams of the weak-coupling theory for Ey + Eqog are shown in figure 2.
The term Ey in figure 2a is the Hartree term, which is identical to the Madelung energy E.
Indeed, the loops in figure 2a denote the homogeneous charge distributions on the chains n and m
which interact through the Coulomb interaction V,,(q = 0). Eg of figure 2b is the Fock term.
This is an on-chain term, which cancels for the energy difference of the two lattices shown in
figures 1a, b. The term which is of particular interest here is shown in figure 2c. For chains at
distances R, we get from this figure

1 _
Evsw = 52 Eysw(m,m), R,, S k'rF1 >

L

0

T |q>kre

We note immediately that the VAW energy between two chains [18] E,,w(n, m) has the same
general structure as the terms in equation (1). The diagram 2¢ (i.e. Eq. (3)), which is usually inter-
preted as describing the short range (R < kg ) forces between electrons of the jellium [19] charac-
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Fig. 2. — Diagrams representing respectively Hartree (i.e. Madelung) (a) Fock (b) and Van der Waals (c)
terms in the cohesive energy.
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terized by the Thomas-Fermi wave-vector kpp, has in our TB limit the meaning of the VdW
energy of a pair of metallic chains.

The cut-off ki describes the screening of the Coulomb interactions by the lattice of metallic
chains [20]. It is given by [13]

k3g ac = 16 nng €*/b = 4 n® nf w? ac/b®> < 1, )

where ng. is the density of electron states at the Fermi level. For wave-vectors smaller than k.
the perturbative diagram of figure 2¢ is not sufficient, and even in the weak-coupling limit the bare
interactions must be replaced at least by their RPA screened values. This range contributes to the
cohesive energy through the zero point motion of the plasmons, strongly renormalized by the
long-range Coulomb forces. The maximum frequency of those plasmons is w, of equation (4).
However, according to this equation, the phase space in which the Coulomb screening is essen-
tial, is small in the weak coupling limit n; w, < 1. Its contribution can thus be left out with
respect to that of equation (3). This is analogous to the r, expansion [19] of the 3d jellium model.
Let us turn now to the integration over ¢, @ in equation (3). In the interchain terms n # m,
which are of primary interest here, the Coulomb coupling V,,(q) is appreciable for g < a™?,
¢~ ! < kg. In other words the interchain backward scattering is weak, and we shall neglect it
here. This cuts-out the logarithmic singularities of the bubbles in our low-order diagram 2c.
For essentially the same reason we are omitting altogether the many-body corrections, related
to the backward scattering and discussed elsewhere in the same physical model [13]. All this is
consistent with our general idea that the condensation of CDW superstructures (Wigner lat-
tices) plays a minor role in the cohesion of the main lattice. With all this in mind we get from

equation (3)
et n® pim

0<R,, <kg. (5)

Evaw(n, m) ~ = n? R2, ’ n® + nm’
Here n{ denote the densities of states, determined in the usual way by the hopping integrals and
the band filling p. Equation (5) shows that in contrast to the usual VAW energy E, w(n, m)isnota
rapidly decreasing function of R,,,. The reason is that the dipoles along the chains important in
equation (5) are of lengths g~ * which are larger than the interchain distance R,,. Thus instead of
going straightforwardly to the first-neighbour argument of equation (1), we prefer to perform
the lattice sums first.
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In order to bring this problem to qualitatively the same level of approximation as that used
until now, we shall replace the actual lattice by its orthorhombic counterpart with interchain
distances equal to a/2, /2. The general form of the lattice sum (3) for both lattices of figures 14, b;is

ng e*

C, log[1/C, k’l‘F\/;] > (6)

EVdW ~ ac
where n; ~ max (n, np), while the constants C, and C, depend weakly on the ratio a/c, and are
of the order unity. Equation (6) shows that the long-range interactions dominate E,, in the
weak-coupling limit. This justifies the use of the point charge approximation [21], which is implicit
in all our calculations.

The long-range features disappear however from the difference of the VAW energies for the two
lattices of figures 1a, b. The corresponding lattice sum can be evaluated exactly to give

et (g - )

2nac  n@ + np

AEyw = log(1 — k%), (7)

where k is related to c/a through the elliptic [22] integral K

¢ KY1-1©) @

For 7a/2 ¢ 2 1, satisfied in TTF-TCNQ, log (1 — k?) ~ — majc.

Equation (7) agrees qualitatively with equation (1), replacing ag and o, by the metallic pola-
rizabilities proportional to nf and n respectively. It also supplies the missing prefactor, which
is not very accurate however, because the point-charge approximation is not accurate at short
distances.

Nevertheless it is interesting to compare AEy,w to the corresponding Madelung (Hartree)
energy evaluated within this same point-charge approximation. The latter can be found from
the closed expressions of reference [21]. The best convergence for E; of a given lattice is obtained
by performing first the summation along the a-direction, where the charge alternation occurs
in both lattices of figures 1q, b. The next step is then devoted to the summation of the interactions
between the fictitious chains in the a-direction. In this way we get

2 2 -
EP}H=4—N%—e—{—log2+ Y em ¥ Kotzg(1+2N’)x

n2;+n2;#0 N=0,%1,...
% (62 2 + (c/2) ng)“’] } ©)

omitting the on-site term, but retaining for convenience the other intrachain terms. Here K,
denotes the Bessel function [22], while v = 0 for TTF-TCNQ and v = n, for HMTTF-TCNQ.
E,, is dominated by the long-range forces (i.e. point-charge approximation is appropriate) for
b < aj2m, ¢/2 when K s involving b are becoming logarithmically singular. However in TTF-
TCNQ the anisotropy comes from the TB overlap integrals rather than from the lattice aniso-
tropy and this condition is not satisfied. In fact for the actual values of lattice parameters all
K, functions in equation (9) are better approximated by the asymptotic expansion K,(x) ~
e"‘/\/§ than by the logarithmically singular behaviour of the opposite small b limit. We are thus
evaluating E,; with roughly the same degree of accuracy as AE, . From this point of view there
is no essential difference between E,, and AE,,, which is given by

2 .2
AE, = + IGeb £ exp(— _1rzc_) (10)
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It is somewhat simpler to discuss the relative stability of the two lattices of figures 1a, b rather
than the stability of each lattice separately. The reason is that the discussion of the relative stabi-
lity does not involve the intrachain terms and that it deals with the qualitative effect. Let us thus
consider the ratio of | AEy,y | to | AE,, |. Not surprinsingly for the weak-coupling limit this ratio
is of the order of nZ w, i.e. smaller than unity. This limit shows however that the importance of
AE,y increases as the long range Coulomb coupling raises towards the intermediate values.
For such, physically realistic values of the Coulomb interaction, the two energies start to com-
pete, in accordance with the simultaneous existence in nature of the TTF-TCNQ and HMTTF-
TCNQ lattices. This leads us to believe that the Coulomb energies of the metallic chains play a
major role in the formation of the segregated stack lattices. On the other hand, other energies
and in particular Eg certainly control such details as e.g. the herring-bone stacking of the mole-
cules.

Let us mention finally that the problem of the intermediate couplings can be treated somewhat
more accurately than in the present treatment by using the bosonization method [11]. Indeed,
with the backward interchain scattering neglected it is possible to extend the notion of the free
plasmon beyond the range [q| < k;r. Expressing the cohesive energy in terms of the zero point
motion of such bosons extends the range of equation (3) to the non-perturbative region. This and
other improvements of the present results are currently under investigation.
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