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Pattern selection in a slowly varying environment

Y. Pomeau and S. Zaleski (*)

Service de Physique Théorique, Orme des Merisiers, 91191 Gif sur Yvette Cedex, France

(Reçu le 18 octobre 1982, accepté le 23 decembre 1982)

Résumé. 2014 Habituellement, dans des conditions supercritiques, des structures cellulaires station-
naires, comme les rouleaux de Taylor-Couette, peuvent avoir n’importe quel nombre d’onde dans une
bande finie, si la structure est illimitée. Si les conditions extérieures dépendent lentement de la posi-
tion, la longueur d’onde devient fonction du paramètre de contrôle local. Si une région sous critique
est reliée par une lente transition à une région supercritique, le nombre d’onde de la région supercri-
tique est défini de façon unique, à des termes exponentiellement petits près.

Abstract 2014 Usually, in supercritical conditions, steady cellular structures (as rolls in Taylor-Couette
experiments) may have any wavenumber in a finite band for an unbounded pattern. If the external
conditions change slowly, the wavelength becomes a function of the local control parameter. If a
subcritical region is smoothly connected to a supercritical one, the wavelength of steady rolls in the
supercritical region is uniquely defined, up to exponentially small terms.
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In a recent work [1] Kramer et al. have studied the problem of wavenumber selection in steady
cellular structures. They reach the conclusion that a single wavenumber exists if the boundary
pinning is eliminated, this wavenumber being the same as the one given by the condition found [2]
by Paul Manneville and one of us [Y. P.], when the latter is applicable.

In this note, we analyse the wavelength selection in a slowly varying environment and propose
an explanation to the computer findings of Kramer et al.
We shall first develop a formal approach and then apply it by using the amplitude equations,

valid near the onset of emergence of cellular structures.

1. General theory. - A steady cellular structure is described by the solution of non linear
(partial) differential equations. This solution is periodic with respect to one space variable, say x,
the original equation being autonomous with respect to x. Furthermore, some external « control
parameter » exists, as rotation speeds in Taylor-Couette experiments or a thickness for buckled
plates, etc... We shall restrict ourselves to a single control parameter, denoted below as 8. The
non linear equations of the problem are of the general form
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the quantity A(x) is some function of x describing fluctuations around an uniform steady state
and equation (1) is a non linear differential equation for A(. ). This has x-periodic solutions denot-
ed below with the subscript zero. It expands in Fourier series as

q being the wavenumber of this periodic solution. As a general rule this wavenumber may vary
in a whole band that depends on 8, so that the coefficients of the Fourier series (2) depend on s
and q. We shall introduce a phase ~(.x-) which, in the periodic case, is simply qx and equation (2)
becomes :

Now Ao is formally a function of three variables Ao[e, ~x ; /]. In the periodic case, it depends
on x through ~ only. This function Ao is such that

with the assumption ~ = xt/J X’ t/J x constant wavenumber.
We shall assume now that 6 depends slowly on x (I 8/~ ( ~x &#x3E; 1) and search an adiabatic

solution in the vicinity of periodic solutions existing at s constant. Equation (1) becomes

where e(.) is slowly x-dependent. The adiabatic solution of (4) is

where Ao depends on E(x) and ~x, as specified by equation (3) and where ~4i ~ Ex, A2 "-I (6; or
~~), etc...

d2Ao
To understand better the origin of terms as A 1, A2, ..., consider the quantity dx 2 [sM, ~; if¡],

which will generally appear in the explicit form of A { ~, A o } which has by assumption, the
reflection symmetry (x) --+&#x3E; ( - x).

where (H.O.T.) stands here and thereafter for higher order terms. In the present case, (H.O.T.) 2013
Ex, exx or Y/xxx. The first term on the right hand side of (6) is of zeroth order with respect to the
small parameter ~x being the local wavenumber. Its eventual contribution to A { ~, Ao } is
cancelled because Ao is a solution of equation (1). The next terms all involve a first derivative with
respect to the slow variable : c. (resp. ~xx) is the small factor in 2 sx ~x ~4o.~c (resp. in ~xx ~o.~)’
Generalizing the expansion (6), one has : 

’

The zero on the right hand side is to remind that the zeroth order contribution cancel. Further-
more both Al and A 2 are of order zero with respect to the small derivatives as we expect that the
wavenumber and e will be function of each other and that ~xx ~ Ex  ~x ~ 0(1). In the above
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example (Eq. (6)) :

The next (small) term in the expansion of the solution of (4), i.e. A1 in (5), has to cancel F..,, A.1 i +
~xx A2 in A { e(x), Ao 1. It is given by

6A Is, ~4 } being the linear operator obtained by linearizing A around A = Ao, this lineari-6A A=Ao

zation is allowed because ~4i(~ s.)  A o. The operator 6A has d Ao as a non trivial kernel~ 
° 

M~ Q~

owing to the translation invariance of the equations. Whence equation (8) leads to a solvability
condition. Let A + be the adjoint kernel of 6A I Ao with respect to the some inner product (H, G)~ ~o
defined for periodic functions of x with the same period, Ao, as Ao. Usually, but not necessarily,
this scalar product is

Thus, the solvability condition for (8) reads

In the limit of very slow variations of s and t/1 X’ the two inner products in (9) define two func-
tions of F. and 0., :

and equation (9) becomes a differential equation relating s and t/1 X’ i.e. the local values of the control
parameter and of the wavenumber

The equation (10) does not imply directly that, for a given e an unique ~x ( = wavenumber) exists.
Equation (10) implies that, if e(x) has a slow transition from ea for x oo to 8’ for x -~ + oo

and if the arbitrary wavenumber is ~x for x oo, thus the wavenumber t/I~ at jc -~ -t- oo is
uniquely fixed for a stationary solution. Our theory could explain the computer results of refe-
rence [1] as follows. Consider a variation of the control parameter that is subcritical for x -+ - oo,
and reaches a constant supercritical value for ~ ~ +00. Following the idea presented before,
the wavevector in the supercritical region must be in the (8, wavenumber) Cartesian plane on the
unique integral curve of the differential equation (10) starting from the onset of instability in this
plane.
. 

Below we show on examples that this integral curve has a finite slope near the instability
threshold. This slope is the same as the one of the curve defining the optimal wavenumber [3],
when this notion has a meaning. Before to study a « concrete example », we give the phase por-
trait of the integral curves of (10) in the neighbourhood of the onset of bifurcation by using the
amplitude theory.
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2. Slowly varying environment in the amplitude theory. - As it will appear below, we shall
need to consider the amplitude equations at the next order after the dominant term for describing
the kind of phenomena in which we are interested. Let X(x) be the complex amplitude of the one
dimensional structure. If, near the instability threshold (e ’" 0+) steady fluctuations with the

wavenumber qo are linearly unstable around the homogeneous rest state, then one assumes that,
in this weakly non linear domain these fluctuations depend on x as 2 (X(x) e‘9°x + X*(x) e-iqOX)
where X is the complex « amplitude ». It satisfies /!  1 and I Xxl X I  1. If / does not depend on
x, the Landau theory gives I X I ~ el/2, the coefficient in front of Bl/2 being computed by standard
methods. A small shift in the wavenumber from qo to qo + b (b  qo) is accounted by taking
/M ~ i e"x, X x-independent. The amplitude theory [4] extends the Landau theory to describe
(among others) non linear saturation of the instabilities and various phenomena due to small
changes in the wavenumber. If one accounts for the « next order terms » this amplitude equation
reads :

The left hand side of this equation is the standard form of the amplitude equation, the single
dimensionless parameter left being e. It is small and positive by assumption and measures the
distance of the control parameter to its threshold value.
The left hand side of ( 11 ) vanishes for periodic solution in the form

which means that (at least near threshold) the wavenumber of the cellular structure is qo + 6, 6
arbitrary in [- 81/2, s~], qo being the wavenumber of the unstable modulation at threshold
(e = 0).

In the range 6 - e, the term Xxx on the left hand side of (11) is of the same order (b2 E1~2 ,~ E5~2)
as the terms on the right hand side of (11) (56~ ~ e512), which are usually considered as subdo-
minant. This explains why we shall need this right hand side, although this is small in the range
b ~, Ell2 (instead of 6 - s).

Equation (11) has a variational structure if it can be put into the form DV[X, X*]/DX* = 0,
where D/DX* is a Frechet derivative and V[X, X*] a real functional of X and x*. This is realized if
# = 0 in equation (11) [compare to Eq. (2. 6b) in Ref. 5] with

Notice that a and ~, as they occur in ( 11 ) must be real, due to the reflexion symmetry x ~ ( - x),
x -+ x~.

If one considers periodic solutions of (11) in the form

the optimal wavenumber gives the largest V per unit length. This potential per unit length is

It is stationary under amplitude variations if 1 i 12 = -r-~2013~, and its value is therefore ~ x
Lj201320132013~-. It has a maximum at 6 = (1.8/4 near 8 = 0, with respect to variations of 6, and this
defines the optimal wavenumber.
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If s, as it occurs in equation (11) is now a slowly varying function of x, one may apply the method
of construction of an adiabatic solution described before to find the relation between the slowly
varying control parameter e(x) and the local wavenumber qo + 5(x). In the amplitude theory,
translational invariance is equivalent to the phase invariance of equation (11) : if X is any solution,
X eiCl’, qJ constant and real is also a solution. The infinitesimal translation (qJ ~ 1) changes X into
X - i~px, so that the kernel of the linearized operator is (iX). The solvability condition equivalent
to (9) is obtained by cancelling terms where the zeroth order solution is multiplied by i.
Thus our starting point is again equation (11) wherein e is supposed to be x-dependent. The

zeroth order solution is

where 0., = 5(x), the local wavenumber being qo + 6(x). Furthermore, i(E, 6) is the function
obtained by putting 6 and 6 constant into (11)

Inserting now the zeroth order solution (13) into (11), one obtains first order quantities ( ~ 8x
or ex) in the gradient expansion. The solvability condition follows and reads :

which is the explicit form taken here by equation (9) [recall 8 = ~~].
Collecting all dominant terms in the domain 6 - E(  1 ), one has

or

with

Thus, at least near (s, 5) = 0, i.e. near the instability threshold, the integral curves’of (15a) are
the level curves of the adiabatic invariant 0(g, 6). These curves draw a system of hyperbolae with

the common asymptotes 8=0 and 8 = (a~ . The curve passing through the representative
point of the onset of instability is the degenerate hyperbolae made of the two asymptotes. The

line a=0 recalls that X = 0 is also a solution if 8 depends on x, the other line is 6 = (oc + ~8) -
and for = 0 gives the wavenumber selected by the optimization principle.

3. Application to the model of Kramer et al. [ 1 ]. - To get analytical result from our considera-
tion one must limit oneself to the vicinity of the instability threshold, where the weak amplitude
approximation works. This explains why, although our general scheme of calculation can be
applied to the strongly non linear case, the results presented below concern the weakly non linear
domain only. In this domain it is only necessary to obtain a and ~, as they appear in equation (11)
to find the wavenumber selected in slowly varying external conditions. We outline this calculation
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for the steady state reaction diffusion equations of reference [ 1 ],

By simple substitutions, they become

with

The amplitude equation can be derived from ( 16c) in a form equivalent to equation ( 11 ), and
one obtains :

with

and

With the above defined parameters, the wavenumber selected by non pinning boundary condi-
tions ( = for a structure at 1 ~ 6 &#x3E; 0 joined smoothly to a subcritical region) is

4. Conclusion. - We have shown that for slowly varying external conditions, a differential
equation relates the wavenumber of a steady structure and the control parameter. If this para-
meter varies in space from sub- to supercritical values, an unique wavenumber exists for a steady
state in the supercritical domain.

This contrasts with the « pinning » boundary conditions (b.c.), as the one generated by the
condition e &#x3E; 0 for x &#x3E; 0 and 6 = - oo for x  0. In this case a whole band of selected wave-
number is known to exist [6] for steady structures in the supercritical domain. It is easy to think of
a continuum of b.c. interpolating between pinning and non pinning b.c. For instance ep(x) =
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Eo(1 - e so &#x3E; 0. For p -+ 0 ~+ this tends to a « non pinning » b.c., although for ~ -~ +00
this becomes a « pinning » b.c. By continuity the band width of selected wavenumber that is
finite for p = + oo shrinks to zero for non pinning b.c. (~ = 0+). One may conjecture that this
width decreases as exp( - cllt) c &#x3E; 0 as ~ -~ 0 +. Actually, as quoted by Landau [7], the adiabatic
Ehrenfest invariants, as the function ~(8, 6) introduced in equation (16b) are truly constants up to
exponentially small terms. This explains why the band width selected for non pinning b.c. is not
accessible to our gradient expansion, because it involves quantities of order exp( - ell Ex I), clearly
outside of the scope of the perturbation calculation in powers in 8.,. Nevertheless, as noted by
Landau too, this order of magnitude estimate fails if the control parameter e(x) is not an analytic
function of x, which is the case in the computer experiments of reference [1]. More precisely the
order of magnitude of the non constant part of the adiabatic invariant is fixed by the distance to
the real axis (measured in units defined by the fast modulation) of the singularity of the complex
extension of s(.) closest to this real axis.
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