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Résumé. 2014 On considère le transport électronique dans des mélanges hydrogène-hélium denses, totalement
ionisés, dans le cadre de la théorie de Faber-Ziman. La conductivité électrique du gaz d’électrons quasi libres et
dégénérés est calculée à partir des facteurs de structure ioniques obtenus par résolution numérique des équa-
tions HNC. On envisage l’influence de la séparation de phase des mélanges H+-He2+ sur la conductivité.

Abstract. 2014 Electronic transport in dense, fully ionized hydrogen-helium mixtures is investigated within the
framework of the Faber-Ziman formalism. The electrical conductivity of the degenerate, nearly free electron gas
is calculated, using the partial ionic structure factors obtained from numerical solutions of the HNC equations.
The possible influence of the phase separation of H+-He2+ mixtures on the conductivity is discussed.
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In fully ionized plasmas of sufficiently high density,
the electron Fermi temperature TF may greatly exceed
the plasma temperature T ; under such circumstances
the transport properties of the highly degenerate,
nearly free electrons can be accurately calculated in the
framework of the Ziman formalism [1] (1). Such a
calculation has recently been carried out for the dense
hydrogen plasma [2] ; for this purpose the ionic compo-
nent was modelled by a classical one-component
plasma (OCP), i.e. a fluid of point ions in an uniform
neutralizing mechanically rigid background, while
the corresponding ionic structure factors were obtained
from Monte-Carlo and hypernetted chain (HNC)
calculations. In this letter we extend the previous cal-
culation to the case of H+-He2+ mixtures. The varia-
tion of the conductivity with temperature is calculated
for fixed values of the pressure P, and of the He con-
centration.
The extension of the Ziman theory for electron

transport to the case of alloys is straightforward [3].
It has been previously applied to the case of fully
ionized H + -He2 + mixtures by Giordano et al. [4],

on the basis of the « Mean Spherical » approximation
(MSA) for the ionic structure. In that work the ions
are assimilated to charged hard spheres, with the
additional approximation that the effective hard

sphere diameters of H+ and He2+ ions are equal. The
MSA procedure has the advantage of yielding ana-
lytical ionic partial structure factors, but the « hard
sphere » part of the ion-ion interaction has no phy-
sical origin, and the effective hard sphere diameter
must be determined independently by an ad hoc
variational procedure [5]. In the present work the
ionic pair structures are deduced from the very
accurate hypernetted chain (HNC) theory which does
not rely on the artificial introduction of an effective
hard core.

In the following we denote by n; the total ionic
number density and by C1 and C2 the partial number
concentrations of H+ (Z1 = 1) and He2+ (Z2 = 2)
respectively. We choose the «ion sphere » radius

ai = (3/4 ~n;)’~3 as the unit of length and define
dimensionless Fourier transforms according to :

with x = r ja; and q = ka;.
The plasma parameter is defined as usual as

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyslet:019810042021045900

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphyslet:019810042021045900


L-460 JOURNAL DE PHYSIQUE - LETTRES

r = pe2lai’ with = 1/kB T. The degenerate electron
gas is characterized by the usual dimensionless para-
meter rs = ae/ao, where ao is the Bohr radius,
ae = a;/( Z &#x3E; 1/3 denotes the « electron sphere » radius,
with  Z") = C 1 Z 1 + C2 Z~. The electron gas is
non relativistic, as long as kB T F  me C 2, i.e. ~ ~ 0.02.
It can be taken as essentially homogeneous as long as
the Thomas-Fermi (TF) screening length exceeds the
« ion-sphere » radius ai, i.e. as long as the reduced TF
wave-number

Under these conditions the fully stripped « point »
ions can be considered as moving in a rigid, uniform
background and are well modelled by an obvious
generalization of the OCP, the so-called « binary ionic
mixture » (BIM) [6], where the ions interact by the
unscreened Coulomb potential

The usual Faber-Ziman formula for the electron d.c.

resistivity in binary fluid mixtures then reads :

where VF is the electron Fermi velocity and

the reduced Fermi wave-number. The S/lv(q) are the
partial ionic structure factors, while U(q) is the screened
electron-ion Coulomb interaction :

The static dielectric function E(q) accounts for electron
screening. In the very high density limit (r., ~ 1) E(q)
goes over to its RPA expression :

where f denotes the Lindhard function [7] :

At lower density (rs ~ 1), EL(q) must be corrected for
exchange and correlation effects. We have adopted
the form proposed by Geldart and Vosko [8] who
replace the Lindhard function f ( y) by :

The second ingredient in the Faber-Ziman formula
(1) is a set of three ionic partial structure factors Sjlv(q)
which characterize the ion density fluctuations in the
BIM model. They are given in terms of the Fourier
transforms of the pair correlation functions :

where h/lv(x) = guv(x) - 1, and g~~(x) denotes the
standard static pair distribution functions deduced
from the HNC closure equations :

In equation (7), C/lv(x) denote the direct correlation
functions which are defined in terms of the h~y by the
coupled Ornstein-Zernike relations :

Equations (7) and (8) form a closed set of three integral
equations for the g~y(x), which are solved numerically
[6]. The resulting Sjlv(q) agree quite well with available
« exact Monte-Carlo data » [6]; they contain the

temperature dependence of the resistivity in equation
(1).
The calculations have been carried out at cons-

tant pressure. Let n denotes the reduced pressure
(in atomic units), 7r = Pao/e2 (n = 1 corresponds to
P = 294.2 Mbar), written as a sum

The dominant, electronic contribution is given appro-
ximately by the Nozieres-Pines formula [9], comple-
mented by a kinetic finite temperature correction :

The ionic part, 7r;, is explained for the BIM model in
reference [6]. For moderate charge ratios Z2lZl,
the excess internal energy of mixing of the BIM is

negligible, and the ionic pressure ~; is then simply
expressible in terms of the equation of state of the
OCP [5] :

where u = U eX/NkB T denotes the reduced excess
internal energy of the OCP and 7~ = T ~ Z ) 1~3 Z~ ~3
[6]. Imposing a fixed total pressure yc, equations (9-11)
yields an implicit equation for F as a function of ?r,
T and C1, which is solved iteratively. The resulting r,
together with C1, determines the SJlv(q) to be used in
equation (1).
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Fig. 1. - D.c. conductivity in strongly coupled H-He mixtures.

Typical results for the electrical conductivity a = llp
are shown in figure 1 for 7t = 0.1. C1 ranges from 0
to 100 % hydrogen, while the temperature ranges
from 3 x 103 K to 10.5 x 103 K. Note that these
physical conditions correspond roughly to those of
the deep interior of Jupiter [5]. As shown by Steven-
son [11] and by Hansen et al. [6], these pressure and
temperature conditions lead to a phase-separation of
the H+-He2+ mixture, and our values for u (at fixed
C 1 and decreasing T) are crossing the demixing curve.
Figure 1 displays the variation of u with T for various
concentrations Cl. The following comments are in
order :

a) As expected, for given T and vr, the resistivity of
pure He2 + is considerably larger than the correspond-
ing resistivity of pure H+ ; even a small amount of,
say 5 %, He2 + in the mixture leads to a large drop of
the d.c. conductivity, due to the much stronger scat-
tering of electrons by the He2 + nuclei (cf. a factor Z 2,
due to [Il2(q)]2, appearing in the integrand of equa-
tion (1)). Notice the important variation of a with T
in the case of pure H+, which is to be contrasted with
the much smoother variation in the case of pure
He2 +, which has a nearly constant resistivity.

#) There is no significant discrepancy between the
curves computed on the basis of the Lindhard die-
lectric function, and those based on its Geldart-Vosko
counterpart; note however that the differences are
largest in the case of pure H + .

y) Upon crossing the phase-separation curve, the
present calculation shows no change in the values of

the electrical conductivity 6 and its temperature
derivative (for ~ = 0.1, the critical parameters are
T’~ N 6 900 K and C1 ~ 0.71 [6]). The values of a
below the coexistence curve, when calculated by the
Faber-Ziman formula in conjunction with the partial
structure factors of the BIM model and an RPA-like
dielectric function, appear as those of a metastable
phase, or equivalently as the analytic continuation
of the conductivity expression which is, strictly speak-
ing, only valid above the coexistence curve, in the

homogeneous phase. It should be noted, however,
that the phase separation is expected to have a strong
influence on the conductivity, due to the large concen-
tration fluctuations near the coexistence curve. Such
fluctuations are not properly accounted for in our
calculation since the ionic and electronic density
fluctuations are essentially decoupled in the BIM
model. A more fundamental approach would have
to consider the mixture as a three component fluid,
where the ionic and electronic components are treated
on an equal footing [12]. The effect of the phase
separation on the electrical conductivity can however
be easily illustrated within the framework of the present
approach, as follows : at a sufficiently low temperature,
say T = 3 x 103 K, the H + -He2 + mixture separates
into two phases which are practically pure H+ and
He2 +, and which have conductivities

and

respectively. The conductivity of the (metastable)
mixture, computed as above, is

for Ci = 0.75 and T = 3 x 103 K. Now, upon
applying the results of the effective medium theory [13]
to a heterogeneous binary medium with randomly
varying transport coefficients (7i and u 2’ we obtain a

macroscopic conductivity 6 given by :

which leads to a conductivity 6 ~ 1.704 Q ~ cm
substantially larger than the previous one.
We are planning to extend the present analysis of

electronic transport in binary ionic mixtures to higher
temperatures, by incorporating the temperature depen-
dence of the dielectric function of the partially dege-
nerate electron gas (14]. The calculations will also be
extended to transport coefficients other than the
electrical conductivity, as well as to other types of
higher valence « impurities » (i.e. different values Of Z2)
than He2 + .
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