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Résumé. 2014 Dans cette lettre, nous calculons la moyenne gelée (sans répliques) pour des verres de spin avec désordre
local. Ceci permet une définition naturelle du champ moyen. On montre que les champs moyens décrivant les
verres de spin sont du type instanton.

Abstract. 2014 In this letter we perform quenched averages (without replicas) for spin-glass systems with local
disorder. This allows a natural definition of a mean field theory. The mean fields relevant to spin-glasses are shown
to be instantons.
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1. Introduction. - In order to explain the puzzling
experimental properties of spin-glasses [1], many
ingredients are likely to be necessary. On the theore-
tical side [2], there is wide agreement on the minimum
input needed to understand qualitatively such proper-
ties. Namely, one should consider models with com-
peting magnetic interactions (frustration) and quench-
ed disorder. Most theoretical models thus replace the
original problem (randomly located spins) by a lattice
problem with random couplings.
Along these lines, there have been mainly two ways

of approaching the delicate spin-glass problem. On
the one hand, a mean field theory has been proposed
by Sherrington and Kirkpatrick (SK) [3], for a

model with long-range interactions; such a model
displays a phase transition towards a spin-glass
phase, but the presence of a quenched disorder has
made so far the low temperature phase difficult to
study (and to understand) [4]. Moreover, due to its
mean field character, the SK model washes out all

spatial correlations, and its results are expected to be
relevant only for dimensions greater than six. On the
other hand, computer studies for «more realistic
models » (e.g. three-dimensional systems with nearest
neighbour interactions) have shown that spatial
correlations are important indeed [5] and some expe-
rimental results have been successfully explained in
terms of a cluster picture [6]. This cluster interpre-
tation is somewhat reminiscent of the Néel’s theory
of « grains fins » [7], but it seems difficult to bridge

the gap between the phase transition approach,
where one expects a collective behaviour of the spins,
and the cluster approach with strong intracluster

couplings and weak intercluster couplings.
In this note, we wish to study a class of spin systems,

with purely local disorder. For such systems, we
perform in section 2, the quenched average and
calculate the free energy (without replicas). A quench-
ed partition function is defined (section 3) whose
leading term is a mean density quenched free energy.
Mean field theory follows from a saddle point treat-
ment of the leading term only. In section 4, we consider
two simple one-dimensional examples, namely ran-
domly located spins interacting via long-range oscil-
latory interactions. The salient features of such models
is the existence of non-homogeneous mean field solu-
tions. The first example [8] displays oscillatory solu-
tions, and is unlikely to depict a spin-glass phase
whereas in the second one, clusters of spins (or instan-
tons) show up below the transition temperature.

2. Quenched averages. - We consider a model
with local disorder : N magnetic impurities are

located at random sites of a D-dimensional lattice.

Any of the Q sites of the lattice can be occupied by 0
or 1 impurity. A given configuration of impurities is
defined by occupation numbers n., taking the value 0
or 1, with the constraint :
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The partition function for such a configuration reads :

where the summation runs over all possible spin configurations, and Jjl denotes the exchange interaction between
spins at sites y and l (for a realistic system, J1 can be thought of as the RKKY interaction). The quenched free
energy for such a system is defined by : 

]

For Ising spins, for instance, (2) can be rewritten :

The quenched free energy F is thus replaced by :

Since Ln Z({ nj }) behaves at most (for a given configuration) like N2, we may compute (5) by saddle point
expansion on a, Vj’ nj around the saddle point value :

i.e.

The quenched free energy averaged over disorder, is thus given by :

where the first term is a mean density quenched free energy and L1 stands for all corrections to this saddle point
result.

This is to be contrasted with the annealed case where one is averaging the partition function Z { n~ } (instead
of the free energy). In that case the partition function enters the saddle point equations and (6b) is to be replaced
by : 

-

leading to a solution distinct from (7).
If one expands the n/s around their saddle point value p, one obtains after resummation the full expression
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for the corrections to the mean density quenched free energy,

This expression includes fluctuation effects around p
and is valid as 0, N -~ oo with N/D =- p. Here the
average  &#x3E;p means that one uses a density matrix
exp L { ni = p } as appearing in (4) with nj = p.

3. Mean field theory. - In the following we shall
be interested in systems with large effective number
of interacting neighbours, a case relevant for « long-
range » forces (or high dimensionality). In such
circumstances a very good approximation is provided
by the mean field theory that replaces a density matrix
proportional to exp L(p) as in (4) by a separable one
]t exp L/p) :
j

Here 4&#x3E; j is chosen self consistently as the best possible
mean field, and this is provided by the saddle point
equation on L(p) :

yielding

It is of interest to notice that in this mean field
approximation all corrections L1 to the mean density
quenched free energy vanish :

Furthermore it can be shown that L1 does not either
affect stability boundaries of the mean field approxi-
mation.

4. Examples. - To work out examples convenient-
ly, we go to the continuous limit ~2, N -~ oo and

4.1 SEPARABLE INTERACTION. - We consider a
one-dimensional model with :

This model has been previously considered [8]. The
mean field approximation is exact and shows a phase
transition. Below 7~ (7~ = JI2), equation (13) yields :

where :

The periodic solution displayed in equation (16)
does not seem to correspond to any realistic spin-
glass model (existence of long-range order).

4.2 NON-SEPARABLE INTERACTION. - We now
consider a one-dimensional model with :

where y  k (which means that the oscillation period
is small compared to the interaction range).
Even though this model is unlikely to show a phase

transition in one dimension, mean field theory pro-
vides, as usual, a qualitative understanding of the
low temperature phase in higher dimensions.
The Fourier transform of J(x, y) can be split into

two terms

where :

Defining the functions ~, 0,, and ~2 by :
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equation (13) becomes :

or, equivalently :

where ;

In the long-range approximation (y  k), equa-
tion (22b) shows that U(x) is of order y.

Neglecting terms of order y2 in (22a), we replace
equations (22) by :

Note that, since the function tf¡(x) is only defined
on the length 0, the above results were obtained
with the underlying assumption that ~(x) is periodic :

Equation (24a) is equivalent to the motion of a
classical particle of mass unity in the potential :

A phase transition appears when the curvature of
the potential at t/1 = 0, changes sign (Fig. 1), namely,
at a temperature :

Fig. 1. - Schematic potential ~).

At T &#x3E; 7c, the simplest solution to equations (24)
is ~ = 0, namely a paramagnetic phase.
Below Tc, two types of solution appear :

- Homogeneous : they correspond to the two

ferromagnetic phases l/J == ± l/J 0’ and to the parama-
gnetic one ~ = 0.
- Non-homogeneous : in the thermodynamic limit

(~2 -~ + oo), new types of mean field are to be consi-
dered, namely those corresponding to motions close
to zero energy (instantons) [9].
A simple study of the stability of the solutions

shows that homogeneous solutions are unstable
below Tc and that only inhomogeneous solutions
of the instanton type may survive.
The physical picture arising below Tc is that of a

gas of instantons. These instantons can be thought
of as coherent spin clusters, with up or down magne-
tization. The finite size of these clusters (increasing
with temperature and diverging at 7c) and the exis-
tence of a zero magnetization region between two
such clusters (Fig. 2) are due to the frustration effect.

Fig. 2. - Instanton-anti-instanton classical solution.

One must keep in mind that these instantons are
completely delocalized in space, yielding the picture
of a paramagnetic gas of clusters (1). In this approach,
the EA order parameter, which builds up below T~,
measures the magnetization carried by one instanton.
Note that in the mean field approximation used

here, 7~ scales like p. However it is clear that for

short-range interaction and small enough density
(p  pp percolation threshold) the system will be

paramagnetic at all temperatures. This phenomenon
appears through the corrections to mean field.
For spin-glasses that do not have long-ranged

interactions like insulating spin-glasses the above

picture of an instanton gas should remain useful for
densities sufficiently larger than pp.
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(1) In mean field theory, the instanton gas is non-interacting,
whereas corrections to the mean field generate effective interactions.



L-77MEAN FIELD FOR SPIN-GLASSES

References

[1] JOFFRIN, J., in the Ill-condensed matter, R. Balian et al. eds.

(North-Holland, New York) 1979, p. 68.

[2] ANDERSON, P. W., ibidem, p. 214. 
[3] SHERRINGTON, D., KIRKPATRICK, S., Phys. Rev. Lett. 35 (1975)

1792.

[4] THOULESS, D. J., ANDERSON, P. W., PALMER, R. G., Philos.
Mag. 35 (1977) 593.

KIRKPATRICK, S., SHERRINGTON, D., Phys. Rev. B 17 (1978)
4384.

PARISI, G., Philos. Mag. B 41 (1980) 677.

[5] BINDER, K., J. Physique Colloq. 39 (1978) C6-1527 and refe-
rences therein.

[6] LEVIN, K., SOUKOULIS, C. M., GREST, G. S., J. Appl. Phys. 50
(1979) 1695 and references therein.

[7] THOLENCE, J. L., TOURNIER, R., J. Physique Colloq. 35 (1974)
C4-229.

[8] FERNANDEZ, J. F., SHERRINGTON, D., Phys. Rev. B 18 (1978)
6270.

[9] COLEMAN, S., The Uses of Instantons, Int. Summer School of
Subnuclear Physics, Ettore Majorana Erice (1977).


