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Résumé. — Nous étudions et classifions des transitions discontinues vers des comportements chaotiques survenant
apreés une seule bifurcation dans des endomorphismes de R. Cette classification peut étre étendue a des systemes
dynamiques plus réalistes. Elle repose sur I’existence possible du mécanisme d’hysteresis. Nous discutons de
P’intermittence comme un test de non-existence d’hysteresis.

Abstract. — We study and classify discontinuous transitions to chaotic behaviour occurring after a single bifur-
cation in real endomorphisms. This classification which can be extended to more realistic dynamical systems,
relies on the possible existence of the hysteresis mechanism. We discuss the intermittency phenomenon as an

evidence for transitions without hysteresis.

1. Introduction. — These last years, many efforts
have been devoted to understand the transition to
turbulent behaviour. These efforts have been sti-
mulated by Lorenz’s numerical investigations [1]
of a non-periodic deterministic flow and a paper
of Ruelle and Takens [2] on the nature of turbulence
where these authors proved the existence of structural-
ly stable strange Axiome A attractors in the neigh-
bourhood of some quasiperiodic flows.

We can describe the transition to stochasticity in
dynamical systems as continuous or discontinuous
according as it occurs respectively after an accu-
mulation of bifurcations [3, 4], or after a finite number
of apparent bifurcations [1]. Renormalization group
methods have been used in order to describe uni-
versal aspects of continuous transitions for simple
dynamical systems [5-9]. In analogy with phase
transitions, we do not expect any universal property
when the transition is discontinuous; we generally
observe a hysteresis phenomenon as e.g. in Lorenz
model [10]. Abrupt transitions to turbulence with
hysteresis have actually been experimentally exhibited
by Maurer and Libchaber [11] on Bénard convection
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in liquid helium. The same results have been obtained
by Gollub and Benson in a similar experiment on
water [12]. However, for a large number of dynamical
systems (endomorphisms of an interval, diffeomor-
phisms of R2?, differential equations), hysteresis has
never been numerically displayed although the sto-
chastic transition seems to be discontinuous [13].
Yet in this case we observe intermittency, as des-
cribed by Pomeau and Manneville in [14].

The aim of this letter is to study the existence of
hysteresis and related phenomena for discontinuous
transitions to chaos. We mainly restrict ourselves
to non-invertible one-dimensional difference equa-
tions where exact results can be derived; other
numerical results on flows and diffeomorphisms will
be reported elsewhere [13].

Let us start quoting a theorem which may be
deduced from lemma 3.1 and proposition 2.1 in the
reference [16] by Misiurewicz.

Let F be the class of C3 functions f : [0, 1] -» R,
such that f has a negative Schwarzian deri-
vative [15] (), and only one critical point X €]0, 1[,
and satisfies f(0) = f(1). Then :

() The Schwarzian derivative of a C> map is defined by :

L3 (L
v -£-3(5)
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for any y >0, if F : [—y,1+y]> R is such
that & |o,,; = f is in F and satisfies :

fO>1, f[O=a>1, f(1)=p<0,

then, for p-almost all x €[0, 1], some iterate of x
under ¥ is not in [0, 1] (where p stands for Lebesgue
measure).

Now let f, : R > R be a C3 function with negative
Schwarzian derivative such that (Fig. 1)

fox) <0 if x < X,
fo) >0 if X;<x<X,
fo@) <0 if x>X,.

1

In order to study transitions to stochasticity we
consider families f; = f, + 4 which present a dis-
continuous transition for 1 = 0.

For A < 0, we define :

® a; < b; < X¥ as the fixed points of the function
S

e ¢; and X, respectively as the smallest and greatest
values of x such that f,(x) = b;.

Some conditions on f, satisfied in C3 open sets,
determine whether the transition occurs with or
without hysteresis when 4 crosses zero. We suppose
that for A < 0, the fixed point a; is stable on the whole
range of parameters we explore. With this class of
models we can also describe cases where the hyste-
resis is incomplete, i.e. cases where decreasing adia-
batically A from values slightly greater than zero,
we cannot trace back the history of bifurcations to
the saddle node bifurcation which gives rise to the
fixed point X¥. The general diagram corresponding
to these situations is represented on figure 2. Keeping
in mind that we are studying transitions to chaos,
we would have to require positive Kolmogorov
entropy for the attractor (4 on figure 2) we arrive
when the fixed point a; disappears. Since it might be
impossible to satisfy this condition on a set of para-
meters with positive measure when f is at least
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Fig. 2. — General bifurcation diagram associated to a discontinuous
transition : 1) with complete hysteresis; 2) without hysteresis;
3) with incomplete hysteresis.

C! [16], we shall be content with cases with positive
topological entropy.

We now proceed to classify the various situations
that may occur.

Case 1. — Transition with complete hysteresis.
This is realized by imposing

filXy) <X, for 1<0. 0))

Hence for A <0 we have fXX,) > b; and the
invariant interval [fZ(X,), fi(X;)] contains the
attractor 4; of the endomorphism f; |, %,; (Fig. 3).
As a consequence A4; is bounded away from the fixed
point b; and we do trace back the A4; history when
the parameter 4 is decreased adiabatically.

Casg 2. — Transition without hysteresis.
This is guaranted by the set of conditions (Fig. 3) :
fo(‘g ) > X,

3)

f3(X2) = ¢ -
Applying the above mentioned theorem (Section 2),
the first condition implies that almost every initial
condition in [ay, X,] has an iterate under f, out of
this interval. On the other hand, the second condition

£)

| A>0

Fig. 1. — Graph of f(x).
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Fig. 3. — fo(x)corresponding to a discontinuous transition to chaos
hysteresis.

is sufficient to imply that everything which goes out
from [a,, X,] is attracted by the fixed point a, for
A=0.

For A 2 0, the measure (discrete or continuous)
associated with the attractor A; is mostly concen-
trated near the locus of the quasi fixed point a;} (Fig. 1).
Almost all orbits are recurrent in the neighbourhood
of af. The average number of successive points of
these orbits in this neighbourhood diverges as A
goes to zero. Thus we obtain an:intermittency phe-
nomenon which is analogous to the one described
by Pomeau and Manneville in [14] (Fig. 4) except
that in our case Kolmogorov-Sinai entropy is not a
continuous function of . This is due to the fact that f;
is homotopic to identity (in contrary to the models
in [14]), so that the transition described here can be

M[ - WL#
AR |
il ) ﬁ"“lﬁf**,\, LBl i

Fig. 4. — Typical intermittency patterns.
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successive iterates of an arbitrary initial point.

: 1) with complete hysteresis ; 2) without hysteresis ; 3) withincomplete

considered as part of a transition from a system with
a finite number of periodic orbits to a chaotic system.
This is relevant for physical systems as e.g. some
periodically driven oscillators [17]. It is remarkable
that this intermittency gives a continuous character
to a transition presupposed to be a discontinuous
one.
For 4 < 0, the fixed point g, is stable, and it does
trap p-almost all orbits issued from an initial condition
in [c;, X;]; as a consequence hysteresis is impossible.
For such values of A, there remains in [b;, X,] an
invariant Cantor set K with zero Lebesgue measure,
. the dynamics on K being homeomorphic to the
full shift with two symbols.
Let us notice that for 4 < A* such that

fM(YZ) = X/;a s

there exists an invariant set [b;, X ;] which contains
an attractor.

Casg 3. — Transition with incomplete hysteresis.
This corresponds to the conditions
i 0(72) > X,
f3(X3) < ¢o
f3(Xy) < foX2) -

)

As in case 2, the first condition prevents the inter-
val [ao, X,] from being invariant. By the second
condition, some orbit issued from [a,, X,;] eventually
reenters this interval. The last condition ensures
invariance of the interval [f#(X3), fo(X,)] (Fig. 3).
With these conditions, we may have an invariant set
partly in [a,, X,] for A < 0. Thus, in concurrence
with orbits issued from [a,, X,] and converging to
the stable fixed point a;, we may find an attractor A4;
at a finite distance from a;. The given conditions
being verified in C> open sets, the same remarks
hold for 4 slightly negative ; this may allow hysteresis.
The necessarily incomplete character of this hysteresis
comes from the fact that when A decreases, the second
inequality is obviously inverted before the first one;
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then the above-mentioned theorem applies and we
end up as in case 2. The hysteresis breaks down
when the metastable chaos, as described by Kaplan
and Yorke [10, 18, 19], begins.

We disregard the case where the last condition
is not satisfied since then the behaviour of orbits
is intimately related to the nature at large distances
of the function f,.

fg( Xa)

R

21

2.0

3/2
, this figure

Fig. 5. — For fo(x) = — x> + px + 2<p%1>

indicates the values of p > 2 such that the transition occurs :
1) with complete hysteresis ; 2) without hysteresis ; 3) with incom-
plete hysteresis. For 1 < p < 2 we are always in case 1.
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These three cases can be realized by varying the
parameter p in the family (Fig. 5) :

fi0 = — X + px + 2(1”%1)3/2 T2 )

this family is obviously C* with negative Schwarzian
derivative and satisfies the conditions of the above-
mentioned theorem. We use this family to illustrate
the intermittency phenomenon in figure 4.

Similar analysis can be done for other type of
bifurcations. For example in the case of subcritical
doubling-period Dbifurcation, the above-mentioned
theorem yields conditions for incomplete hysteresis.
However, for such a bifurcation, the intermittency
(when it is observed) corresponds to another mecha-
nism, namely the existence of homoclinic points
in the invariant manifold of the fixed point.

In diffeomorphisms and flows of R", similar pheno-
mena can be exhibited e.g. in Lorenz model [1]
where we observe a subcritical Hopf bifurcation
with incomplete hysteresis [10, 18, 19]. Numerical
studies on diffeomorphisms of R? and flows of R?
will be reported in a forthcoming paper [13]. Let us
point out that the three cases of discontinuous transi-
tions we discussed in this letter can be observed in
R?* difffomorphisms defined by :

(x, ) = (fix) + », bx) (6)

where f;(x) is a real endomorphism which presents
such transitions. This means that the classification
also works for flows of R3, at least for those which
are suspension of these diffecomorphisms.
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