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Résumé. 2014 En appliquant le théorème du viriel à un système coulombien de N particules neutralisées par un fond
continu, on définit très naturellement une pression cinétique « virielle » du système de particules, qui est une
quantité essentiellement positive. Le lien est fait, dans un cas particulier, avec la définition thermodynamique
de la pression utilisée dans les travaux précédents, qui a l’inconvénient de donner des valeurs négatives quand le
paramètre de couplage est suffisamment grand.

Abstract. 2014 Application of the virial theorem to a Coulomb system of N particles neutralized by a continuous
background, leads quite naturally to the definition of a « virial » kinetic pressure for the system of particles,
which is fundamentally positive. This definition is related, in a particular case, to the thermodynamic one used
in previous works, which has the drawback to give negative values for sufficiently strong coupling.
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1. The system : definition and related problems. 2013
We consider a finite classical system of N particles
of charge - e, imbedded in a homogeneous, non
moving, neutralizing background of charge density
PB e. Particles interact between each other and with
the background according to Coulomb’s law. We

emphasize that this one-component plasma (OCP)
is composed of the sole N particles, the background
being considered as extraneous.
Such a system has been considered in a classical

paper by Brush, Sahlin and Teller (BST) [1], an
extensive work by Hansen [2], a theoretical paper by
Lieb and Namhofer [3] (establishing the existence
of the thermodynamic limit) and many others.
A somewhat strange point in these previous works

is that the system is found to have a negative pressure
for values of the coupling parameter

r = e2(4 7rPB/3) 1/3 (kT ) ~

greater than about 4. This anomaly is usually justified
by two types of arguments :

1. - The negative pressure of the OCP is, when
considering a real system with two or more compo-
nents, over-compensated by the positive pressure of the
real background. In adopting this point of view,

(*) This is a revised version of a note submitted to the C.R.A.S.
(Paris).

one loses however the intrinsic self-consistency of the
OCP model, since some of its essential features

(like stability) depend on the physical properties
of the background - which we precisely want to

ignore. Moreover it seems to us that, according to
kinetic theory, a pressure, even a partial one, i.e. the
pressure exerted by one component in presence of the
others, should always correspond to the mean

exchange of momentum by units of time and surface
with a limiting wall, and thus be positive, at least for
systems in equilibrium [4]. A recent experiment [5]
with electrons confined in a plane gives consistency
to our point of view. The stable system of electrons
realized in this experiment, in which the background
is made up by a metallic anode, should indeed exhibit
a well defined pressure, measurable in principle and
thus positive. The usual thermodynamic definition
of the pressure in this two-dimensional case, however,
also predicts negative values for strong enough
coupling.

2. - The negative pressure of the OCP is a characte-
ristic anomaly of a canonical theory of the system
- for which the grand-canonical ensemble is not

equivalent to the canonical ensemble ([3]). Actually
the definition of the pressure in the canonical theory
by means of a derivative of the free energy versus
the volume raises a lot of difficulties, due to the
existence of a background and the interpretation
of its compression 2013’ even if those difficulties may not
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always appear clearly in the usual case of an infinite
periodic system.

In the work which is briefly reported here we show
that it is possible to define, using the simplest and
oldest concepts of kinetic theory, an essentially
positive pressure for the OCP, by considering a finite
system with free boundary conditions and taking
into account all effects due to the presence of this

boundary.
The problem of the existence of a thermodynamic

limit for this pressure is considered in a forthcoming
paper by Choquard et al. [6].

In the particular case of a spherical geometry we
have been able :

1. - To express the pressure as a time average of

very simple functions of the coordinates of the

particles.
2. - To obtain in a Monte Carlo canonical simu-

lation the approximate values of the pressure for
r ~ 10 and to verify that it is equal to pw kT, where
pw is the density of the OCP at the wall.

3. - To show that our expression of the pressure
can be obtained in a Helmholtz formalism provided
one modifies the usual hypothesis on the way the
system is compressed.

4. - To check that the results of our simulations
on a finite system are in good agreement with those
of previous works and thus that our result on the
pressure is based on a different interpretation of
perfectly compatible measures.

2. The equation of state. - The virial theorem

(see e.g. [7]) is written :

where the angular brackets indicate the time average
for a system in equilibrium. K is the kinetic energy
(in our case 3 NkT/2), ri the position vector of the ith
particle and Fi the total force acting on this particle;
which may be decomposed in L Fji (force due to

j*i
the other particles), Fbi (force due to the background)
and Fpi (force exerted by the wall on the colliding
particle).

For our Coulomb system the three contributions
to the virial read : ~

a) 
"

where rij = I ri - rj and Upp is the potential energy
of the particle-particle interactions.

which depends, of course, on the shape of the
container, is not equal in general to the average of the
potential energy of the particle-background inter-
actions

There is no a priori reason that the term

 b2mv/bt. bS ~ ,
the average transfer of momentum from the wall to
the colliding particles at the point r of the surface,
i.e. the local pressure, should in general be uniform
on the surface. But in all cases it is a positive quantity
provided the wall is purely passive and perfectly
reflecting.

In the case of uniformity of the local pressure,
(5) reads :

where P is the kinetic pressure and V the volume of the
container.

In the case of non-uniformity of the local pressure,
(6) may be considered as the « virial » definition of the
pressure.
The equation of state is thus written :

At this point of the analysis it is important to notice
that the usual form of the virial theorem

where U is the total potential energy

is not identical to (7). This expression (8) strictly
holds only for a system of particles (U = Upp) and
does not in general take correctly into account the
particle-background interactions, at least in the
finite case.

Let us now specialize to a particular geometry
where the forces and potentials are easily expressed :
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the container is a sphere of radius R. Of course (6)
is valid by symmetry, and (3) and (4) become respecti-
vely, using Gauss’s theorem and without any approxi-
mation :

where (N + s) e is the total charge of the background,
allowance being made for an excess charge s, and

Notice that in this particular case there appears a
simple relation between Upb and the corresponding
term of the virial, but with the unexpected factor - 2,
so that the equation of state is written :

We stress that the analysis above is completely independent of any hypothesis on the properties (e.g. rigidity
or compressibility) of the background. The « virial » kinetic pressure defined by (11) may hence be considered
as the partial pressure of the sole particles. It has been derived only from the forces applied on the system,
and is here expressed in terms of the potential energies introduced in fine, only to compare it more easily to
the usual expression (8). It is of course independent of the arbitrary constants allowed in the definition of the
potential energies.

As Upp and Upb are not extensive quantities, we may « normalize » them by introducing, for example,
their values at infinite temperature (ideal fluid limit), in which case the equation is written :

where

and

are calculated in the limit where the one-particle
distribution function is constant in the sphere and no
correlations occur between the positions of two

particles. Another « normalization » would be to

introduce the values of the energies at zero tempe-
rature, but this would require the knowledge of the
fundamental equilibrium state, known only in one
dimension [8].

It is worthwhile to notice that now the last term
of (12) is less than intensive and thus disappears in
the thermodynamic limit, provided the absolute value
of the excess charge s increases more slowly than
7V~, and also that it is identically zero for s = - 1.
This quite remarkable case, as already noticed by
Baxter [9] in one dimension, corresponds to a situation
where every particle, considered as a test-particle
interacts with a vanishing total external charge.

3. Numerical simulation. - We have used the
Monte Carlo method of Metropolis et al. [10],
which generates a Markov chain simulating the cano-
nical ensemble, also used by BST and by Hansen.
The pressure is obtained from (11), by replacing
time averages by ensemble averages. As in our case

we do not benefit from the periodicity of the basic
cubic cell, whose homogeneous coverage is easily
realized by the unweighted Markov chain, we have
adopted, after careful testing, a slightly modified
scheme to properly take the wall effects into account :
each time the Markov chain leads a particle outside
our spherical vessel, the previous state is recounted,
and the chain is restarted from this state.
The initial state is taken either at random or with a

crystalline structure. The equilibrium state has been
checked to be attained in both cases and for all
values of the coupling parameter considered, after
some 104 steps in the Markov chain. Each trial
consists in an average over the 105 states following
this relaxation ; in this way we obtain a reasonable

convergence for not excessively large values of the
coupling parameter.
The preliminary results shown in the figure were

obtained for a neutral (s = 0) system of 256 particles
whose centre of gravity is constrained to stay fixed
at the centre of the sphere. This (not very important)
constraint is imposed by choosing an initial state

which satisfies it and by generating each successive
state by moving two randomly choosen particles
with displacements Ar and - Ar. Our method,
unless radically modified, does not allow to obtain
precise values of the « virial » pressure for large values
off : indeed, since the numerator of (12) includes two
large terms « Upp - Up’p &#x3E; and 2  Upb - Upb »
with correspondingly large absolute errors, the rela-
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tive error on their difference, which tends to zero
with decreasing temperature, becomes quickly inor-
dinately large. Actually it seems that this feature is
a characteristic of the physics of the system and not
of the simulation. In a «molecular dynamics »
simulation the collisions against the wall would

become, at these low temperatures, extremely rare
and thus the determination of the kinetic pressure
would be very rough.
The fact that the error bars, for high values of F,

could become compatible with a negative estimation
of the pressure should not induce any confusion :
the pressure defined by (11) is by definition positive.
If one would obtain a negative « measure » of P for
some value of F, one should suspect the simulation
process (e.g. the legitimity of replacing the time

average by an approximate canonical average) and
not the definition of P.
Of course the N dependence of our results has been

carefully checked in a series of experiments with
smaller values of N, which cannot be reported here.
It seems that for N = 256 the thermodynamic limit is
approached with a quite good accuracy (see below).
These initial experiments thus clearly show that

the o virial » kinetic pressure, which in the high
temperature limit approaches of course the ideal gas
law, tends to zero with and faster than the temperature.
An identical result has been found, in the framework
of a broader analysis which will be reported later,
for the analogous cases in one and two dimensions.
The main difference between our approach and

the one followed in [1] [2] is that, while these authors
use a modified Ewald potential to minimize wall
effects we have chosen to treat these effects exactly,
as we think that the departure of the pressure at the
wall from the perfect gas one enters through the

modifications of the physical quantities (principally
the density) as consequence of the interactions.
Here we adopt an « operational » point of view for
the measure of the pressure.
To illustrate this idea, we have measured, during

the previous simulation, the average particles density
on the wall of the sphere. As could be expected in a
experimental simulation of the canonical ensemble,
this wall density, normalized to the average density
in the full sphere is equal, within the experimental
error bars, to the pressure we have defined in (11’),
normalized to the ideal gas pressure.

Finally it should be emphasized that the compu-
tations involved here are much simpler than in [1] [2]
due to the simplicity of the Coulomb potential
compared to the Ewald one. The consequent gain in
computer time could be, in some problems, a consi-
derable advantage.

4. Thermodynamic definitions of the pressure.
Choquard [11] has shown that one can define a
« mechanical » pressure PM of the Wigner model by
differentiating the free energy versus the volume,
keeping constant not the total charge of the

particles + background system (as in the usual defi-
nition), but the background density, and he has
given a rather general expression for the difference
between these two definitions. This idea can be

applied to our system.
In the classical thermodynamic definition

we express the partition function Z by means of the
integration variables x~ = rdR which reduce the
volume to the sphere of unit radius (S)

Following Choquard we have explicitly included the self-energy of the background Ubb. The derivative of Z is
written

Let us now express the energies as functions of the
reduced variables, introducing explicitly RB, the
radius of the sphere which contains the back-
ground [12]. In the infinitesimal change of volume
used to compute the pressure, RB will either remain
equal to R, the radius of the sphere containing the
particles (usual definition of the thermal pressure Po), ]
or be kept constant (definition of the « mechanical »
pressure PM).
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so that

and

Equations (19) and (21) are thus respectively identical
to (8) and (11), the averages being now taken over the
canonical ensemble.
From this analysis it follows that :

1. - In the case of spherical symmetry the « virial »
kinetic pressure is identical to the « mechanical »

pressure defined in [11] (the generalization to other
geometries is not trivial).

2. - Choquard’s formula is recovered in this

particular case if one assumes the system neutral

(s = 0)

3. - If one wants to define, using a Helmholtz
formalism, a measurable pressure, it is necessary

(at least in our particular case) to keep the density
of the background constant rather than to let it vary,
as was done in previous works.
To illustrate those differences, we have plotted in

the figure, in addition to the results of our Monte Carlo
simulation for PM, the results obtained (in the same
runs) for the « thefD1~l »pressure Po (19). Comparison
of the latter with the values given by the semi-empirical
formula of De Witt [13], simultaneously serves as a
check on the general validity of the simulation of a
finite system. It is indeed seen that our results compare
satisfactorily with previously published ones. Though
the number of particles is small and the effects of
finiteness of our system could be expected to be large
(for N = 256, 40 % of the particles are, in the fluid

Fig. 1. - The pressure, defined in two ways, is plotted as a function
of the coupling parameter.
The squares show the values of the « virial » pressure. Error bars

represent ± o’, with d the standard deviation on the average values
of 20 series of 5 000 successive states, considered for this sake as

independent experiments.
The open circles show the values of the particles density at the wall
p(r = R)/PB’
The continuous curve corresponds to De Witt’s semi-empirical
interpolation formula. The black circles show the values of the
« thermal » pressure, obtained from our simulation with a precision
better than the diameter of the circle. The systematic difference with
the continuous curve suggests that the thermodynamic limit is not
completely reached.

limit, located within a distance (47~/3) ~ from
the wall), our results are remarkably close to the ones
calculated in the simulation of the infinite periodic
OCP.
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