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Résumé. 2014 On montre que, dans l’hypothèse du réseau chimiquement ordonné, il existe des relations simples entre
connectivité et dimensionnalité des sous-réseaux d’alliages covalents amorphes. L’existence d’une concentration
seuil pour la présence d’amas infinis d’atomes de même type est rapidement discutée.

Abstract. 2014 We show that, within the chemically ordered network approximation, simple relationships exist
between connectivity and dimensionality of subnetwork of amorphous covalent alloys. We then rapidly discuss
the existence of a concentration threshold for the presence of infinite cluster of identical atoms.
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1. Introduction. - In a recent paper Connell and

Lucovsky [1] have presented a method for systemati-
cally describing local order in amorphous covalent
alloys A, -xBx. They specify the network structure in
four stages : the coordination number at each atomic
site, the distribution of different bond types AA,
AB, BB, the symmetry of local molecular environ-
ments and the topological rules for the network

connectivity. The word connectivity includes concepts
such as coordination, diedral angle statistic and ring
closure. They focused on two models, the random
covalent network (RCN) model and the chemically
ordered (CO) model which both satisfy the 8-N rule
(the coordination on every atomic site equals 8-N
where N is the number of the column of the periodic
table for the considered element). This rule is very
often verified for the amorphous solids of column IV,
V, VI. One measures experimentally a coordination
number close to 4 for amorphous silicon (aSi) and aGe,
3 for aAs and aSb, 2 for aSe and aTe. Binary alloys
between the different elements are easy to obtain in
the amorphous state within a wide range of compo-
sitions. These alloys sometime disobey the 8-N rule
in their crystalline phase. This is mainly due to perio-
dicity requirements and hence is not to be expected
in the amorphous phase where the longe range cons-
traints disappear. ,
We propose to use, in addition to the four Connell’s

arguments, considerations about the dimensionality
of bonds between like atoms, i.e. the dimensionality
of the like atoms subnetwork. This is possible within
the CO approximation which corresponds to the
maximum local order (by repulsion between like
atoms when they are first neighbours). This model
is a limit approximation (maximum number of AB

bonds) which seems to be reasonable for many
amorphous covalent alloys. We shall suppose the .

network to be ideally realized (without dangling
bonds) and homogeneous with respect to the spatial
repartition of AB bonds.

2. General case. - Considering an alloy A 1 _ xBx
let ZA(ZB) be the total number of first neighbours of
A(B) as given by the 8-N rule (except for the case of
hydrogen in aSit-xHx for which we suppose ZH == 1).
We are limited to the case :

The CO model includes a critical compound
composition Xc = ZA/(ZA + ZB) for which there are
only AB bonds. The partial coordination numbers
(which are mean values averaged over the whole
network) are given by :
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Let us define the local dimensionality Dxx of a local
arrangement of bonds around a given atom of type X
by :
1 + Dxx = number of X type first neighbours of

the given X atom .

If the alloy is homogeneous we can suppose that the
connectivity is nearly the same everywhere. We
then define the extended dimensionality dxx, using
the (averaged) coordination numbers Cxx by :

As we shall see, this dimensionality dxx corresponds,
when it takes integer values, to the real dimension
of the subnetwork of the homogeneous alloy which
follows the ideal CO model. So, using relations (1)
and (2), we have the following relationships for the
subnetwork A of A 1 _ xBx :

Relation (2) shows that we can have non integer
values of dxx and that is why we use the word dimen-
sionality instead of dimension. aCAA/ax can be under-
stood as the rate of rearrangement of the AA bonds,
depending on the dimensionality of the subnetwork A
when x varies.

3. Examples. - a) ALLOY aSi1-xHx (zsi = 4,
ZH = 1). - The critical value Xc is 0.8 but, since
monovalent H cannot build a subnetwork, we are
confined to the range x  xc’ We focus on the silicon
matrix for which Csisi, following (1), is given by :
C = 4 - x/(1 - x) (Fig. 1). Furthermore it is impos-

Fig. 1. - Plot of the Si-Si coordination number versus Hydrogen
content x. The arrows indicate aC/ax for the three values of x
discussed in the text (x = 0, 0.5, 0.66).

~

sible to build an infinite structure for x &#x3E; 0.66 so
we shall divide the discussion in two parts :

- C = 4 and x = 0 correspond to the non hydro-
genated aSi and therefore to the three dimensional (3D)
random network [2] :

- C = 3 and x = 0.5 correspond to a 2D corru-
gated layer if H is completely spread out (no Si-H2
bonds) :

- I

- C = 2 and x = 0.66 correspond to the chain-
like structure of (SiH2)n :

For these three integer values of the coordination
number, there is an agreement between the real
dimension of the silicon matrix and the dimensio-

nality defined by dsisi = Csisi - 1.
The different values of aC/ax show that, when

increasing the H concentration, there is a greater
rearrangement of the Si matrix for a little change of x.

2013 jc = 0.8 correspond to the molecule SiH4
(Cssi = 0 which gives d = - 1). By decreasing x
we next obtain Si2H6 for x = 0.75 (C = 1 and d = 0)
and so on until x = 0.66. Thus we have reviewed all
the polymers of intermediate dimensionality between 0
and 1.

All these results are summarized table I.

b) ALLOY IV-VI (FOR EXAMPLE aGel-xSex OR
aS~ -~OJ. - A belongs to column IV and x~ = 0.66.
Using relations (1) we obtain the following relations
for the coordination numbers :

These results are illustrated on figure 2.
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Table I. - Evolution of the dimensionality of the Si
matrix in Si1-xHx when x varies from 0.8 to O.

x Material d C

0.8 SiH4 - 1 0

0.75 Si2H6 0 1

0.727 Si3H8 0.33 1.33

0.714 Si4H1o 0.5 1.5

0.66 (SiH2)n 1 2

0.5 Sio.sHo.s 2 3

corrugated network
0 aSi 3 4

Fig. 2. - Plot of the different partial coordination numbers in the
case of the IV-VI alloy : aGel-xSex; a means Ge and b means Se.

4.  Percolation ». - We now study the feasibility
of making an infinite self avoiding walk on a subnet-
work by jumping from one atom to neighbouring
like atoms. It is an unusual percolation problem for
two main reasons :
- We have to deal with a mixing of two subnet-

works with different connectivities instead of a unique
network with constant coordination number at each
site.
- The atoms A and B are not randomly distribut-

ed : their distribution in space follow the rule maximum
number of A-B bonds.
The first reason makes the general problem more

difficult to solve but the second one allows an easy

determination, within the CO hypothesis, of the

concentration threshold for which these infinite

walks appear. The maximum alternance of atoms A
and B leads to the most unfavourable case for per-
colation and these walks will be possible just when the
dimensionality of the given subnetwork reaches the
value 1. Below the value dAA = 1 the subnetwork A
consist in isolated islands of connected A atoms.
These islands look like short chains or sometime
tree-like configurations with interrupted branches.
The obtained value of the threshold should be

considered as a superior limit for any other structural
model. We shall call this value pc(X) to prevent any
confusion with the previous defined Xc which is clearly
different : at p~(X) an infinite self avoiding walk is

possible on the X subnetwork while at Xc every X
atom is surrounded only by Y atom (and reciprocally)
and first neighbour walks are impossible on any
subnetwork. In the case of the alloy A 1 - xBx, the value
/?e(A) of the threshold is given, using relations (1)
and (2), by :

With our notation Pc is related to 1 - x for the
subnetwork A and to x for the subnetwork B.

Let us look at two examples :
- aSi1 1 _ xHx relation (3) gives :

It corresponds to the infinite disordered chain a

(SiH2)n’

We can expect some properties being modified
when the concentration of Si increases from one side
to the other of the value 0.5. One indeed observes
some changes in the optical properties (reflectance
and dielectric constant results of Phillip [3]).

5. Conclusion. - These remarks about subnetwork
dimensionalities in covalent materials should provide
a useful tool for structural modeling considerations
as well as for electronic properties investigations.
But the restrictive CO hypothesis must actually
reduce its validity since wrong bonds and possible
failures of the 8-N rule are certainly present in the
real material.
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