High frequency critical attenuation of sound in He3-He4 mixtures near $T\lambda$

B. Lambert, R. Perzynski, D. Salin

To cite this version:
B. Lambert, R. Perzynski, D. Salin. High frequency critical attenuation of sound in He3-He4 mixtures near $T\lambda$. Journal de Physique Lettres, 1979, 40 (18), pp.477-479. 10.1051/jphyslet:019790040018047700 . jpa-00231669

HAL Id: jpa-00231669
https://hal.science/jpa-00231669
Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
High frequency critical attenuation of sound in He3-He4 mixtures near T_λ

B. Lambert, R. Perzynski and D. Salin

Laboratoire d’Ultrasons (*), Université Pierre-et-Marie-Curie, Tour 13, 4, place Jussieu, 75230 Paris Cedex 05, France

(Reçu le 7 juin 1979, accepté le 20 juillet 1979)

Résumé. — Nous avons mesuré l'atténuation critique du son à 1,1 GHz dans des mélanges He3-He4 de concentrations molaires d'He3 : 0,06, 0,20 et 0,24. Les résultats au-dessus de la transition de phase normale-superfluide sont analysés avec les mêmes fonctions d'échelle que celles utilisées dans l'He4 pur à des fréquences dans la gamme du kHz.

Abstract. — We have measured the critical attenuation of sound at 1.1 GHz in He3-He4 mixtures of 0.06, 0.20 and 0.24 molar He3 concentrations. The results above the superfluid-normal transition are scaled with the same scaling function used in the kHz frequency range for pure He4.

Recent experimental results on the critical attenuation of sound in pure helium 4 around T_λ, at both low frequencies [1, 2] (v = 1 MHz) and high frequencies [3] (~ 1 GHz) have helped specify the different contributions to the attenuation. At GHz frequencies the main contribution comes from the order parameter fluctuations. On both sides of the transition, these fluctuations contribute to the attenuation in a form which is not symmetric in temperature relative to T_λ. This contribution takes the form:

$$\alpha_T = \alpha_s \frac{\omega \tau}{c + \omega \tau}$$ (1)

with a characteristic time $\tau = \tau_0 t^{-\delta}$, $t = |1 - T/T_\lambda|$ and c is a constant. Such an expression fits the experimental data from 2.3 kHz to 1.2 GHz, for $T > T_\lambda$.

In He3-He4 mixtures the He3 concentration acts as an inert variable (as the pressure along the λ line), thus it becomes interesting to test the universality of the scaling function (1) for different mixtures. This was done recently at low frequencies [1, 4] (v < 45 MHz). The purpose of this paper is to extend these measurements up to 1.1 GHz; this high frequency offers an especially good opportunity to study the contribution of the fluctuation mechanism to the attenuation [3].

The acoustical transmission technique used and the method by which we relate the transmitted signal to the attenuation, have already been described in previous articles [3]. Because we use thin samples (~ 5 to 10 μ), no gravity corrections are needed.

The first results of our measurements concern the dispersion of sound velocity : within the accuracy of our measurements (~ 0.2 m/s), we see no critical dispersion at any concentration; this result is in agreement with our previous result in pure He4 [3] and with the fact that the critical dispersion is expected to decrease with increasing concentration [1, 4].

Before analysing the critical attenuation α_s, we have to subtract the non critical attenuation α_B from the measured attenuation. For $T > T_\lambda$, we take into account the contribution of the shear viscosity and of the thermal conductivity; the increase of α_B with the He3 concentration is connected with the decrease of the density and of the velocity of sound. For $T < T_\lambda$, the problem is more complicated : the elementary excitations (phonons and rotons) contribute to the attenuation; this contribution is well known in pure He4 [4], it peaks at 1.5 K for 1 GHz. In He3-He4, this contribution is completely unknown at GHz frequencies. Therefore it is not possible for us to extract the critical attenuation for $T < T_\lambda$ at this frequency.

The λ transition temperature $T_\lambda(X)$ is deduced from the He3 molar concentration (see table) with a maximum error of 10 mK. The accuracy of our temperature measurement is better than 1 mK; but due to the error in the determination of $T_\lambda(X)$, our total accuracy is worse. Also shown in the table is the...
temperature T_{max} of the small apparent maximum of the attenuation just below the transition.

Table. — X is the molar He3 concentration of the mixture; T_λ, the temperature of the normal superfluid transition [1, 4, 6]; T_{max}, the temperature of the small maximum of the attenuation below the transition temperature $T_\lambda(X)$; $\tau_0(X)$ is the value which gives the best fit to the data (see text).

<table>
<thead>
<tr>
<th>X</th>
<th>0</th>
<th>0.06</th>
<th>0.20</th>
<th>0.24</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_λ</td>
<td>2.172</td>
<td>2.085</td>
<td>1.875</td>
<td>1.805 K</td>
</tr>
<tr>
<td>T_{max}</td>
<td>2.169</td>
<td>2.070</td>
<td>1.860</td>
<td>1.775 K</td>
</tr>
<tr>
<td>$\tau_0(X)$</td>
<td>1.5</td>
<td>2.2</td>
<td>4.0</td>
<td>5.2×10^{-12} s</td>
</tr>
</tbody>
</table>

Later we only present experimental results for the normal phase. The value of the critical attenuation at the transition α_{c} is a decreasing function of X. We present in figure 1 experimental value α_{c}/α_{c}, for $T > T_\lambda$, with $x = 1.13$ for $T > T_\lambda$ and $X = 0$; the frequencies are 600 kHz [1], 10.2 MHz [7], 90 MHz [7], 775 MHz [3] and 1 GHz [5].

![Fig. 1.](image1)

Fig. 1. — The full lines are theoretical curves (see Eq. (1)) with $x = 1.13$, $c = 0.5$ and respectively $\tau_0(X) = 2.2 \times 10^{-12}$ s and $\tau_0(X) = 4.1 \times 10^{-12}$ s for $X = 0.06$ and $X = 0.20$ mixtures.

$T > T_\lambda$ for two different He3-He4 mixtures. In previous papers [3], we analysed our data with the characteristic time τ_2 of a relaxation mechanism; exp. (1) is then used with $\tau = \tau_2$, $\tau_2 = 2 \times 10^{-12}$ s and $x = 1.062$; c, which is a free parameter, is determined as $c = 0.5 \pm 0.05$ for $T > T_\lambda$. Here we follow the procedure of reference [4] (Fig. 7) and we determine, with the experimental data from kHz [1] to 1.1 GHz [3], the exponent x; for pure He4 we find $x = 1.13 \pm 0.05$. Using eq. (1) with $c = 0.5$, we determine

$$\tau_0 = (1.5 \pm 0.2) \times 10^{-12} \text{ s}$$

in accordance with previous experiment [2]. We present in figure 2 the values of α_{c}/α_{c} versus $(2 \pi/\omega) t^{-x}$ with $x = 1.13$ for $T > T_\lambda$ and $X = 0$; the corresponding values of $\tau_0(X)$ which best fit the data are given in the table. In figure 2, the full lines represent the value of the scaling function (1) for the corresponding mixtures: these scaling functions are in reasonable agreement with the experimental data. Finally we have to mention that in He3-He4 mixtures another dissipation process may contribute to the attenuation of sound: it is the mass...
diffusion (a_D), for which we have no theoretical expression in the critical regime. In pure He4, where there is no mass diffusion, we analyse our data with a fluctuations contribution. In He3-He4 mixtures it is possible to analyse the data in the same way. Therefore we can say that it is possible to make the assumption [4] that the mass diffusion contribution, if it exists, can be described by a function of the same form as the fluctuations.

Conclusion. — We have measured the critical attenuation of sound at 1.1 GHz in He3-He4 mixtures. Above the transition, the data are fitted with the same scaling function from 2.3 kHz to 1.1 GHz.

References