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Résumé. — Nous utilisons les concepts pris dans les théories récentes sur la fusion des solides a
2 dimensions pour définir les paramétres d’ordre des phases solide, smectiques A et B des cristaux
liquides. Dans les phases smectiques bien ordonnées, de type B par exemple, nous introduisons, un
ordre a longue distance entre les orientations des liaisons des molécules proches voisines en plus de
’ordre de position & courte distance dans le plan des couches. Les implications de ce modéle pour la

diffusion des rayons X sont discutées en détail.

Abstract. — We show how recent theories of two dimensional melting can be carried over to provide
natural order parameters for solid, smectic B, and smectic A phases of liquid crystals. Smectic B
and other well-ordered smectic phases correspond to systems with bond orientational long range
order and positional short range order in the plane of the smectic layers. The X-ray scattering predict-

ed by this model is discussed in detail.

Recently smectic liquid crystals, which have long
range orientational order of the molecules combined
with varying degrees of positional order, have been
the subject of extensive experimental and theoretical
investigation. As a result we have rather good theoreti-
cal models for the smectic A (SmA) and smec-
tic C (SmC) phases characterized by one dimensional
density waves whose wave vector is along (SmA) or at
an angle (SmC) to the nematic director [1]. Also,
as a result of combined light and high resolution X-ray
scattering, a rather good quantitative experimental
description of the SmA phase is now emerging [2].
One of the more interesting features of the SmA phase
is that the lower marginal dimensionality d° is
three [3]; this is the spatial dimensionality at which
fluctuations prevent the establishment of true long
range order [4, 5, 6]. Between the SmA or SmC phases
and the crystalline solid of many materials are one or
more intermediate phases which are characterized
by a considerable degree of order within and between
the smectic layers. Although beautiful experimental
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work has been done on the SmB and similar phases,
especially by the Orsay group [7, 8], little progress
has been made on the theoretical front. In particular
no convincing microscopic definition has been given
for the order parameter(s) of these phases to distin-
guish them from the SmA or SmC phases and the
crystalline solid.

Marginal dimensionality in ordinary solids occurs
at d° = 2 and considerable theoretical work has been
carried out for two dimensional (2D) solids [9, 10].
In this paper we suggest how the concepts introduced
by Halperin and Nelson (HN) [10] for the 2D melting
problem can be carried over to 3D liquid crystals.
We emphasize that our discussion is essentially
qualitative in nature. However, this 2D melting
analogy appears to be very successful in accounting
for the overall features of smectic liquid crystals.
We hope therefore that our observations will serve
to inspire more rigorous theory for liquid crystals of the
sort carried out by HN for 2D melting.

We begin with a summary of the experimentally
known facts for the various smectic phases. Most
of these, especially with respect to macroscopic pro-
perties, have been discussed elsewhere [1, 11], and we
limit our attention to X-ray scattering patterns. In the
SmA and SmC phases the distribution of molecules
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in the planes normal to the density wave is random as
in a conventional liquid ; the X-ray powder pattern [12]
shows a sharpring at ¢, = 2 n/d, where d is the density
wave period, and a diffuse outer ring corresponding
to the first peak in the in-plane liquid structure factor.
In the phases between SmA or SmC and the crystalline
solid the diffuse outer ring becomes a series of sharp
rings, reminiscent of the rings in a crystalline powder
pattern [7, 8, 11], but with several essential differences.
First of all, only a small number of primary reflections
are observed. In multidomain SmB phases often
only the primary (110) in plane reflections are clearly
visible, while in SmH or SmE phases one can typi-
cally resolve (110), (111), (200), (201), (210), and (211)
reflections. The important observation is that only
reflections with small Miller indices are clearly visible,
and this has led most workers to describe these SmB
like phases as ones with considerable local order or
quasi-long range order, but without a precise defini-
tion of the latter concept. A second feature, especially
for SmB’s, is that the observable reflections are accom-
panied by very pronounced diffuse scattering whose
intensity varies as Ag~2 = |q — G |72, where q is
the momentum transfer and G is a reciprocal lattice
position. The third feature, and most important from
our point of view, is that one can prepare single
domain samples in which one observes, for example,
six well defined (200) or equivalent reflections rather
than a ring of scattering. This feature precludes any
model based on short range order (S.R.0.) alone.

A possible association between SmB liquid crystals
and 2D melting was first noticed by de Gennes and
Sarma [13]. Explicitly they considered a set of idealized
2D harmonic systems stacked to yield a 3D structure.
Since de Gennes and Sarma proposed their model
considerable progress has been made in the theory of
2D melting. In particular it is now believed that the
harmonic model does not provide a realistic picture
of melting and that for an isotropic 2D model melting
occurs as a result of the disassociation of bound pairs
of point dislocations — this is the Kosterlitz-Thouless
mechanism [9]. However, in a crystal the orienta-
tional anisotropy, such as the six-fold symmetry of a
triangular or hexagonal lattice, must be explicitly
considered in the theory. Such a theory has recently
been given by Halperin and Nelson (HN) ; they point
out that one must consider both positional and orien-
tational correlation functions. The positional order
may be quantitatively described by the correlation
function

P(G, l') — < eiG.[n(r)—u(O)]> (1)

where u(r) is the displacement of the lattice at r.
The orientational order parameter [14] for six-fold
symmetry is defined by y(r) = e'¢®™ where 0 specifies
the orientation of a bond (i.e. the line between the
centres of mass) between two nearest neighbour
molecules at r (see Fig. 1). Then the orientational
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FiG. 1. — Correlated triangular droplets in state (ii), upper,

and state (iii), lower, of the Halperin Nelson model for two dimen-

sional melting. Here d is the separation between the droplets and &,
is the positional correlation length within the droplets.
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correlation function is

O(r) = Cy*) ¥(0) > )

Mermin has shown rigorously [14] for an ideal 2D
system that the positional order parameter { e‘" >
is zero at all finite temperatures, but that a 2D solid
may have bond orientational long range order (L.R.O.)
since O(r) does not decay to zero at large r.

Halperin and Nelson have shown by explicit calcu-
lation with an elastic continuum Hamiltonian that
a 2D crystal has three distinct phases. These are
phase (i), at low temperatures with orientational
L.R.O. of near neighbour bonds and algebraic decay
of position order, so that

o) ~ <y 2.

At intermediate temperatures is phase (ii) with posi-
tional short range order and algebraic decay of
orientational correlations, thus

P(G,r) ~ 71D,

—r/

e .
ISTPRI

P(G,r) ~ o(r) ~ rmed)

In phases (i) or (ii) the algebraic decay of correlation
functions is accompanied by an infinite corresponding
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susceptibility. The high temperature phase (iii) has
only short range order with
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We suggest the following heuristic application of
these results to SmB and similar phases. Analogous
to de Gennes and Sarma, we identify the solid phase
with stacked layers of HN’s phase (i). The infinite
positional susceptibility means that an infinitesimal
interaction between layers will convert the algebraic
decay of positional correlation functions into true
3D long range order. For this same reason it seems
highly unlikely that the SmB phase can be formed of
stacked Kosterlitz-Thouless quasi-ordered 2D solids,
as was recently proposed by Huberman, Lublin,
and Doniach [15]. In the 2D harmonic system the
positional susceptibility is finite above a certain
temperature so that layers may be stacked to form a
SmB phase in the de Gennes Sarma model.

We propose that the SmB and higher ordered smec-
tic phases can be described as stacked layers of HN
phase (ii). We expect that interactions between layers
will cause true in-plane bond orientational L.R.O.
rather than the algebraic decay of O(r) in HN phase (ii).
Since the SmA phase has algebraic decay of positional
correlations [16] along the 1D density wave and by
analogy with 2D crystals has bond orientational
L.R.O. in the same direction, the SmB phase should
have true 3D bond orientational long range order.
Since the positional in-plane correlations of phase (ii)
decay exponentially, the corresponding susceptibi-
lity will be finite. Thus we expect stacked layers of
phase (ii) can exist as well-ordered smectic phases
with layers free to slide on one another provided the
between layer interactions are sufficiently weak.
The melting of the aliphatic chains [17] would provide
a mechanism to reduce the interaction, which should
be weaker for longer chains; this probably explains
why only the longer chain members of a homologous
series exhibit SmB like phases.

Finally, we identify stacked layers of HN phase (iii)
with SmA or SmC phases. As mentioned above, the
layers are stacked with algebraic decay of the positional
correlations along the 1D density wave directions.
The bond orientational L.R.O. which is present by
analogy with 2D solids manifests itself as the fixed
angle between the molecular axes and the smectic
layers. The states of our model are summarized in
table 1.

TABLE 1
Correlations in liquid crystal phases

In-plane bond orientational In-plane positional

Phase

correlations correlations
Solid L.R.O. L.R.O.
SmB L.R.O. Exponential decay (S.R.O.)
SmA  Exponential decay (S.R.O.) S.R.O.
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There are further subdivisions to be made to des-
cribe the various well-ordered smectic phases; these
include tilt angles, rotational degrees of freedom about
molecular long axes, and the type of in-plane lattice.
In the tilted phases, the molecular tilt means two-
fold orientational in-plane L.R.O. even in the SmC
phase [18] which will induce some six-fold order.
Thus the well-ordered tilted phases differ from SmC
in that the bond orientational L.R.O. is a primary
order parameter rather than induced. Most of the
discussion in the literature [e.g. 8] can be incorporated
directly into our bond orientational L.R.O. model.

We now discuss some of the consequences of our
model. Clearly the primary consequence is the iden-
tification of a microscopic order parameter which
enables a quantitative differentiation between SmA,
SmC, and the well-ordered SmB type phases.

The model also suggests a physical explanation for
the strange temperature dependence of the SmA
phase elastic constants B and D [19]. These constants
give, respectively, the restoring force for compression
of the smectic layers and for tilt of the molecules
away from perpendicular to the layers. Several expe-
riments have established [19, 20, 21] that B vanishes
at the SmA-nematic transition with a power law
quite different from that predicted by analogy with
3D superfluid helium ; we believe this to be the result
of the divergent phase fluctuations of the SmA order
parameter and the absence of true positional L.R.O.
In addition, D goes to zero with a different power law
than B [19, 2], a result quite unexpected from the *He
analogue. In our view, since D is directly associated
with the angle between the molecules and the smectic
layers, which has true L.R.O., we might expect
different critical behaviour for D compared with B.

To begin a discussion -of the implications of our
model for X-ray diffraction patterns, we remind the
reader that the results of an X-ray experiment are
sensitive to the positions of the molecules, and that one
normally observes peaks in the scattered intensity
at momentum transfers corresponding to reciprocal
lattice vectors. Our model for the SmA and SmC
phases is identical to the conventional one, a 1D
density wave with algebraic decay of positional
correlations together with a weakly correlated liquid
transverse to the density wave direction. Hence we
predict the usual X-ray pattern.

For SmB type phases important differences occur.
The in-plane orientational L.R.O. makes it possible
to prepare single domain samples with well defined
bond orientations across the entire sample. The effect
is illustrated in figure 1. Instead of the ring one would
observe with orientational S.R.O., for a single domain
sample with orientational L.R.O. we predict resolved
peaks at the reciprocal lattice positions of the in-
plane lattice (hexagonal for SmB). We also discuss
the shape of these peaks. Halperin and Nelson compare
their phase (ii) to a 2D nematic ; this would have very
short positional correlation lengths even in the pre-



L-402

sence of orientational L.R.O. It seems clear however
that in order to have six-fold in-plane orientational
L.R.O. combined with algebraic decay of positional
correlations perpendicular to the planes, there must
be positional correlations that extend over quite
large distances. Thus we expect the correlation length
¢, > in-plane nearest neighbour separation; in HN
phase (ii) {, ranges from ~ 6 lattice parameters to oo
as the melting transition is approached. We there-
fore predict an X-ray pattern with well defined Lorent-
zian peaks (with Ag~? tails) centred about the lower
order reciprocal lattice positions in the plane. The
width of the peaks provides a measure of £, and as
the in-plane order increases more reflections will
become observable.

These predictions are consistent with the available
information in the literature [7, 8, 11, 12]. Studies so
far have been carried out with relatively low resolu-
tion; ultrahigh resolution studies, similar to those
of Als-Nielsen et al. [3], are required to provide a
definitive test of our model. The de Gennes Sarma
model is probably incorrect to the extent it is based
on a 2D harmonic system, but an experimental dis-
tinction between their model and ours is possible.
Our model predicts an analytic structure factor
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corresponding to vectors of the in-plane reciprocal
lattice of the SmB phase while the de Gennes Sarma
picture predicts a cusp. Finally, the de Gennes Sarma
model does not provide a natural transition between
the SmB and SmA phases, whereas this transition,
HN phase (ii) to phase (iii), is an essential feature of
our model.

In conclusion, we note that if our adaptation of the
Halperin-Nelson 2D melting picture to smectic liquid
crystals is correct, then smectics in turn provide a
rich laboratory for investigation of the ideas developed
for systems whose marginal dimensionality d° is two.
Primarily because of substrate difficulties it is difficult
to imagine, for example, a real physical 2D fluid
in state (ii). However, smectics may be studied in
bulk without serious substrate problems and may be
probed with a wide variety of experimental tools.
Thus smectic phases may provide important insights
into the problem of melting in two dimensions.
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