

Isomeric state and rotational band in 158Ho

N. Rizk, J. Boutet

► To cite this version:

N. Rizk, J. Boutet. Isomeric state and rotational band in 158Ho. Journal de Physique Lettres, 1976, 37 (9), pp.197-200. 10.1051/jphyslet:01976003709019700. jpa-00231273

HAL Id: jpa-00231273 https://hal.science/jpa-00231273

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Classification Physics Abstracts 4.220 — 4.240

ISOMERIC STATE AND ROTATIONAL BAND IN ¹⁵⁸Ho

N. RIZK (*) and J. BOUTET

Institut des Sciences Nucléaires, BP 257, 38044 Grenoble Cedex, France

(Reçu le 1^{er} avril 1976, accepté le 21 mai 1976)

Résumé. — Le noyau impair-impair ¹⁵⁸Ho a été étudié au moyen des réactions ¹⁵⁹Tb(α , 5n)¹⁵⁸Ho et ¹⁶⁰Dy(p, 3n)¹⁵⁸Ho. Un état isomérique de période $T_{1/2} = (29 \pm 3)$ ns a été mis en évidence. Une bande de rotation a été développée jusqu'au spin 16⁻.

Abstract. — The odd-odd ¹⁵⁸Ho nucleus is studied by means of the reactions ¹⁵⁹Tb(α , 5n)¹⁵⁸Ho and ¹⁶⁰Dy(p, 3n)¹⁵⁸Ho. The life-time of an isomeric state is measured as $T_{1/2} = (29 \pm 3)$ ns. A rotational band is developed up to spin 16⁻.

1. Introduction. — In the framework of a systematic study of the spectroscopy of neutron-deficient holmium isotopes, the level scheme of the odd-odd nucleus 158 Ho has been investigated.

A previous investigation by Stenström and Jung [1] determined the genetic relationships and half-lives of ¹⁵⁸Ho isomers. Recently Abdurazakov *et al.* [2] and Harmatz and Handley [3] have investigated the decay scheme of the nucleus ¹⁵⁸Er \rightarrow ¹⁵⁸Ho. As a result of their investigations the ground state of ¹⁵⁸Ho is found to have spin and parity 5⁺ corresponding to 67 protons and 91 neutrons with a p 7/2⁻ [523] \uparrow n 3/2⁻ [521] \uparrow configuration. An isomeric state ($T_{1/2} = 27$ min.) in ¹⁵⁸Ho with energy 67.3 keV is known which has been interpreted as having spin and parity 2⁻ and which corresponds to possible configurations :

$p 1/2^+ [411] \downarrow n 5/2^- [523]$	↓ Ref. [2]
p 7/2 ⁺ [404] \downarrow n 3/2 ⁻ [521]	↑ Ref. [3]
p 7/2 [−] [523] ↑ n 3/2 ⁺ [402]	Ţ

It is the purpose of this letter to discuss the above possibilities and compare them with our data which concern the levels of ¹⁵⁸Ho studied by in beam spectroscopic methods in the reactions (α , xn γ) and (p, xn γ).

2. Experimental procedure and results. — The in beam experiments were carried out at the Grenoble cyclotron. For the ¹⁵⁹Tb(α , 5n) reaction, a monoisotopic terbium foil target of 5 mg/cm² was used. The ¹⁶⁰Dy(p, 3n) reaction was performed with a 5.5 mg/cm² 85 % enriched ¹⁶⁰Dy₂O₃ target. The study of excitation functions suggested that alpha and proton particle energies of approximately 63 MeV and 43 MeV respectively were the most favourable for the production of ¹⁵⁸Ho. Gamma lines belonging to

TABLE I

Summary of the experimental results

E_γ	I_{γ}	Assignment		
67.3 ± 0.1	95 ± 8	¹⁵⁸ Ho	$2^- \rightarrow 5^+$	
70.9 ± 0.1	72 ± 6	¹⁵⁸ Ho	$6^- \rightarrow 5^-$	
98.9 <u>+</u> 0.1	540 ± 50	¹⁵⁸ Dy		
100.6 ± 0.2	185 ± 19	¹⁵⁸ Ho	$7^- \rightarrow 6^-$	
115.1 ± 0.2	200 ± 20	¹⁵⁸ Ho	$8^- \rightarrow 7^-$	
156.9 ± 0.1	$1\ 000\ \pm\ 90$	^{158m} Ho	$5^- \rightarrow 5^+$	
159.3 ± 0.2	210 ± 21	2 ¹⁵⁸ Ho	$9^- \rightarrow 8^-$	
166.1 ± 0.1	250 ± 26	\[\begin{bmatrix} 158 Ho \\ 159 Ho \]	$10^- \rightarrow 9^-$	
171.5 ± 0.3	W	2 ¹⁵⁸ Ho	$7^- \rightarrow 5^-$	
213.8 ± 0.2	155 ± 16	$\begin{cases} {}^{158}\text{Ho} \\ {}^{158}\text{Dy} \end{cases}$	$11^- \rightarrow 10^-$	
215.7 ± 0.2	163 ± 17	¹⁵⁸ Ho	$8^- \rightarrow 6^-$	
218.2 ± 0.1	1 320 ± 80	¹⁵⁸ Dy		
221.9 ± 0.2	89 ± 12	¹⁵⁸ Ho	$12^- \rightarrow 11^-$	
255.9 ± 0.3	55 ± 7	¹⁵⁸ Ho	$13^- \rightarrow 12^-$	
274.4 ± 0.3	77 ± 8	¹⁵⁸ Ho	9 ⁻ → 7 ⁻	
277.4 ± 0.4	35 ± 12	¹⁵⁸ Ho	$14^- \rightarrow 13^-$	
286.4 ± 0.4	35 ± 12	¹⁵⁸ Ho	$15^- \rightarrow 14^-$	
320.4 ± 0.1	850 <u>+</u> 80	¹⁵⁸ Dy		
325.4 ± 0.2	210 ± 21	¹⁵⁸ Ho	$10^- \rightarrow 8^-$	
379.9 ± 0.2	163 <u>+</u> 18	¹⁵⁸ Ho	$11^- \rightarrow 9^-$	
425.4 ± 0.2	50 ± 5	¹⁵⁸ Dy		
435.8 ± 0.2	246 ± 25	¹⁵⁸ Ho	$12^- \rightarrow 10^-$	
477.8 ± 0.2	107 ± 13	¹⁵⁸ Ho	$13^- \rightarrow 11^-$	
533.3 ± 0.2	155 ± 16	¹⁵⁸ Ho	$14^- \rightarrow 12^-$	
563.8 ± 0.3	134 ± 20	¹⁵⁸ Ho	$15^- \rightarrow 13^-$	
617.0 ± 0.3	100 ± 12	¹⁵⁸ Ho	$16^- \rightarrow 14^-$	

^(*) Permanent address : Department of Physics, University of Ein-Shams, Cairo, Egypt.

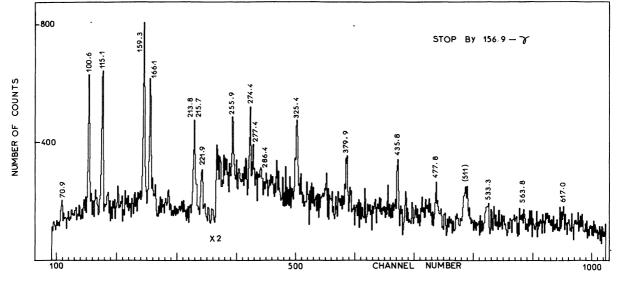


FIG. 1. — Example of coincident spectrum (stop by 156.9 keV- γ).

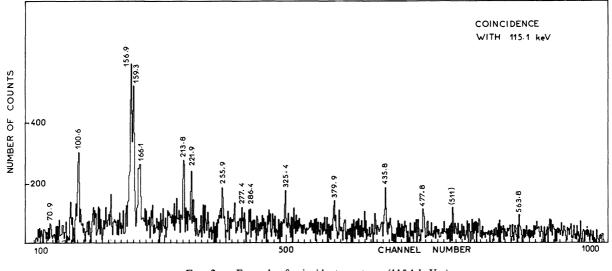


FIG. 2. — Example of coincident spectrum (115.1 keV- γ).

 157 Ho and 159 Ho and their daughter products were observed in the spectrum due to the (α , 6n) and (α , 4n) reactions.

The experimental information consists of γ -ray spectra (in and out of beam), the life-time of the isomeric state measured using the cyclotron pulses and the prompt and delayed γ - γ coincidences. The results of our experiments are summarized in table I and in figures 1, 2, 3 and 4. In table I only the energies and the relative γ -ray intensities for the lines of 158 Ho and 158 Dy are tabulated. A spectrum obtained using the delayed coincidence method is presented in figure 1. In this figure the 156.9 keV γ -ray is taken as the gate STOP. Figure 2 gives an example of the prompt coincidences for the 115.1 keV γ -ray. The decay curve for the 156.9 keV line of 158 Ho is shown in figure 3.

3. Data analysis and results. — In the course of measurement of in and out of beam gamma spectra, an intense delayed gamma line at 156.9 keV was found to decay with a half-life of (29 ± 3) ns. A comparison of this value with those assigned for the isomeric states in odd-odd holmium isotopes is given in the following table.

	¹⁶⁴ Ho [4]	¹⁶² Ho [5, 6]	¹⁶⁰ Ho [5]	¹⁵⁸ Ho
Spin	6-	6-	(5-)	
$\bar{T}_{1/2}$	37.5 min.	68 min.	60 ns	29 ns
Energy	139 keV	106 keV	118.1 keV	156.9 keV

Thus, while both the 162 Ho and 164 Ho nuclei seem to have a 6⁻ isomeric state with the

p 7/2⁻ [523] ↑ n 5/2⁺ [642] ↑

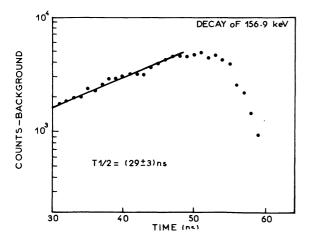


FIG. 3. — The decay of the 156.9 keV peak.

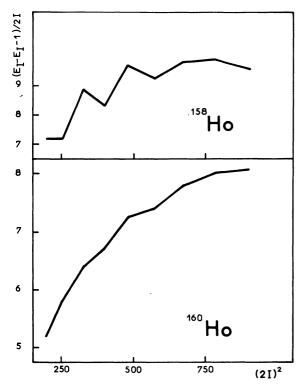


FIG. 4. — Plot of effective inverse moments-of-inertia associated with individual cascade transitions for ¹⁵⁸Ho and ¹⁶⁰Ho.

configuration, the isomeric state observed at 118.1 keV in ¹⁶⁹Ho apparently has not this configuration as reported by Leigh, Stephens and Diamond [5]. These authors indicated that the 6⁻ state should also occur in ¹⁶⁰Ho and the rotational band observed is probably based on this state with the configuration 6⁻, p 7/2⁻ [523] \uparrow n 5/2⁺ [642] \uparrow . This conclusion was based on the very great similarity between the sequence of γ -rays transitions in both ¹⁶²Ho and ¹⁶⁰Ho. Moreover the oscillations in the energy level spacings for ¹⁶²Ho and ¹⁶⁰Ho obtained by plotting

$$(E_I - E_{I-1})/2 I \text{ vs } f(2 I)^2$$

are in phase. The isomeric state could be a 5⁻ state with the configuration p $7/2^-$ [523] \uparrow n $3/2^+$ [402] \downarrow .

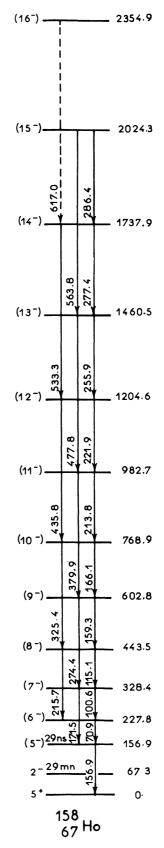


FIG. 5. — Proposed level scheme of ¹⁵⁸Ho.

With regard to the nucleus ¹⁵⁸Ho, it must be noted that the sequence of γ -transition is different from that in ¹⁶⁰Ho. This discrepancy may be explained by the presence of the p 7/2⁻ [523] Nilsson level in the configuration which shows strong perturbation by Coriolis coupling. The increasing perturbation of the p 7/2⁻ [523] band with decreasing mass number is indicated by the variation of the strength of fluctuations in neighbouring ¹⁵⁷Ho and ¹⁵⁹Ho nuclei [7]. Figure 4 shows this in a plot of $f(2I)^2$ for ¹⁶⁰Ho and ¹⁵⁸Ho. It is clear that the perturbation in the energy level spacing of ¹⁵⁸Ho is stronger than that in ¹⁶⁰Ho. If we suppose that the curves $(E_I - E_{I-1})/2I$ must be in phase in both ¹⁶⁰Ho and ¹⁵⁸Ho, the 156.9 keV state of spin 5⁻ must be assigned as the isomeric state in the ¹⁵⁸Ho nucleus. The spin $I = K = 6^-$ might be attributed to the head of the rotational band.

However, two other assumptions are also possible :

1) The 6^- state could be attributed as the isomeric state and considered as the head of the rotational band.

2) The isomeric state could be assigned as the 5^- state by supposing a weak transition between the 6^- and 5^- state. We could not see a gamma line of such low energy with our experimental arrangement; if present, it is undoubtedly highly converted and will be difficult to observe. In this case the γ -ray

of 72.9 keV could represent the transition between the 7^- and 6^- states.

By choosing the spin and parity of the isomeric state as 5^- , a possible configuration for this state is $p7/2^-$ [523] $\uparrow n3/2^+$ [402] \downarrow . According to Gallagher-Moszkowski's rule, the 2^- state of 67.3 keV in ¹⁵⁸Ho is the lower member of the doublet. However, this situation leads to a different interpretation from that given in refs. [2, 3].

4. Conclusion. — a) The level scheme of 158 Ho proposed on the basis of our experiments is shown in figure 5.

b) The rotational band observed in ¹⁵⁸Ho is highly perturbed by Coriolis coupling. This is due to the fact that the orbits of the proton and neutron states originate from high-*j* shells of $h_{11/2}$ and $i_{13/2}$ respectively and to the fact that with decreasing A the perturbation increases rapidly in the neighbouring odd-A nuclei.

Acknowledgments. — It is a pleasure to thank Dr. R. Piepenbring and Dr. S. André for fruitful discussions and comments.

References

- [1] STENSTRÖM, T. and JUNG, B., Nucl. Phys. 64 (1965) 209.
- [2] ABDURAZAKOV, A. S., GROMOV, K. Ya., ZHELEV, Zh. T., KALIN-NIKOV, V. G., LIPTAK, Ya., NAZAROV, U. K. and URBA-NETS, Ya., Sov. J. Nucl. Phys. 8 (1969) 367.
- [3] HARMATZ, B. and HANDLEY, T. H., Nucl. Phys. A 191 (1972) 497.
- [4] JØRGENSEN, M. H., NIELSEN, O. B. and SKILBREID, O., Nucl. Phys. 84 (1966) 569.
- [5] LEIGH, J. R., STEPHENS, F. S. and DIAMOND, R. M., Phys. Lett. 33B (1970) 410.
- [6] EKSTRÖM, C., NORELAND, T., OLSMATS, M. and WANNBERG, B., Nucl. Phys. A 135 (1969) 289.
- [7] DIAMOND, R. M., International Conference on the Properties of Nuclei far from the Region of β Stability, Leysin (1970).