
HAL Id: jpa-00231257
https://hal.science/jpa-00231257

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pressure broadening of an anticrossing signal
J. Derouard, R. Jost, M. Lombardi

To cite this version:
J. Derouard, R. Jost, M. Lombardi. Pressure broadening of an anticrossing signal. Journal de Physique
Lettres, 1976, 37 (6), pp.135-138. �10.1051/jphyslet:01976003706013500�. �jpa-00231257�

https://hal.science/jpa-00231257
https://hal.archives-ouvertes.fr


L-135

PRESSURE BROADENING OF AN ANTICROSSING SIGNAL

J. DEROUARD, R. JOST and M. LOMBARDI

Laboratoire de Spectrométrie Physique (*), Université Scientifique et Médicale de Grenoble,
B.P. 53, 38041 Grenoble Cedex, France

(Reçu le 8 mars 1976, accepte le 13 avril 1976)

Résumé. 2014 Nous montrons que l’élargissement sous l’effet de la pression de la largeur
2 ~(4 V2 + (01270393)2) d’un signal d’anticroisement (où V est le couplage entre les deux niveaux qui
s’anticroisent et 0393 l’inverse de leur durée de vie) n’est pas dû seulement à l’accroissement de 0393 sous

l’effet des collisions. Nous montrons que la largeur du signal est donnée par la formule

2 ~(4 V2 ab03B3/03B3 + (0127 ab03B3)2), où ab03B3/03B3 est le rapport des temps de relaxation effectifs de la cohérence et
des populations des deux niveaux.

Abstract. 2014 We show that the pressure broadening of the width 2 ~(4 V2 + (01270393)2) of an anti-
crossing signal (where V is the coupling between the anticrossing levels and 0393 the reciprocal of their
lifetime) is caused by more than just the increase of 0393 by collisions. We find that the linewidth is given
by 2 ~(4 V2 ab03B3/03B3 + (0127 ab03B3)2), where ab03B3/03B3 is the ratio of the effective relaxation times of the coherences
to the populations of the anticrossing levels.
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1. Introduction. - The anticrossing phenomenon
occurs whenever two levels a ) and b ), with

unperturbed energies Ea and Eb, of an atom or a
molecule are brought into near coincidence by
applying a magnetic field, provided that they are
coupled by some interaction V = ~a~~J~b~.In the
vicinity of the crossing point, the eigenvalues E+
and E- of the total Hamiltonian repel one other and
the associated eigenfunctions I + ) and I - ) are
mixtures a ) and b ). This produces an equalization
of the populations of I a) and I b &#x3E; at the avoided
crossing point if some steady state excitation mecha-
nism produces a difference between the populations
of a ) and b )~. This resonant-like variation of

population may be observed by monitoring separately
the intensity (and/or polarization) of the light emitted
by a ) and b ). This phenomenon was observed
for the first time on the sublevels of the 2 2p manifold
of Li [ 1 ]. The coupling was due to the hyperfine
interaction. Since then, several other experiments
have been carried out in which ~ was due to an
electric field connecting two opposite parity levels [2],
and more recently to a fine or hyperfine interaction
connecting singlet and triplet levels of helium-like

systems [3]. This last kind of experiment has led to
the relaxation studies which follow.
We would like to mention from the onset that

experiments of magnetic or electric resonance can be

(*) Laboratoire associe au Centre National de la Recherche

Scientifique.

considered as anticrossing experiments in the space
of atom + quantized radiofrequency field [4] so that
effects analogous to the one we study here do exist in
resonance experiments. One aspect of this similarity
is studied in the third paragraph.
The usual calculation of the anticrossing signal for

steady state excitation, based on the solution of the
following rate equation for the density matrix

with

is straightforward. In the simplest case in which two
levels of same radiative lifetime 1/f are excited

incoherently with rates na and nb, one finds that the
steady state population of I a &#x3E; is

(and the symmetric formula for Pb)’ This produces,
as a function of (Ea - Eb), a Lorentzian signal of
width at half maximum
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We have performed experiments on singlet triplet
anticrossings of 4He [3]. In this case V, the spin orbit
coupling, is roughly 100 times larger than the radiative
decay term ~F, so that the influence of liT in (3) on the
linewidth is only 10-4. When one increases the pres-
sure to a few times 10-1 torr, T is shortened by
collisions by a factor of two or three [5] which,
according to formula (3), implies a negligible broaden-
ing of the anticrossing curve. In fact, we have found
experimentally that the width was roughly doubled.
The purpose of this letter is to give the explanation
of this phenomenon.

2. Theory. - At high pressure, when the interato-
mic collisions do play a role, eq. (1), restricted to the
two anticrossing levels I a &#x3E; and b ~, is no longer
sufficient. I a &#x3E; and I b &#x3E; are two particular Zeeman
sublevels, amid two Zeeman sets a’ )_, ~ a" ~ ... and
( b’ ~, ~ I b" ) ... of two levels a and b. The collisions
produce transfers between Zeeman sublevels of a same
level, as well as quenching transfers to other levels.
One takes this into account by replacing eq. (1) by :

We shall now show with a simplified example how
these transfers can produce a great increase of the
anticrossing width. Consider two levels a and b of

angular momentum J = ~, where I a + ), ~ I a - )
and I b + ), b 2013 ~ are their Zeeman sublevels.
The sublevels a 2013 ) and I b + ) are coupled by V
and anticross. The other two do not anticross but they
are coupled to the anticrossing ones by collision. This
is a limiting case of our 4He nD levels studies [3] in
which the five Zeeman sublevels of the D levels are

replaced by two.
We make the following assumptions on the collision

process, whose validity in our experimental case will
be discussed in a forthcoming detailed paper.
- The collisions do not couple a and b. This

corresponds to the Wigner spin rule in the case of
singlet triplet anticrossings. In this case aap, the pro-
jection of the density matrix p into the subspace a, bbp,
its projection into b, and abp, which represents the
coherence between a and b are not coupled by colli-
sions.
- The relaxation process is isotropic, i.e. the

anisotropy due to the magnetic field has no influence
on the collision process. This amounts to saying that
the evolution of the atom under the influence of the
Zeeman effect is negligible during the collision time.
One can show [6] that this isotropy hypothesis

implies that the relaxation of each xx’p, with x, x’ = a, b,
depends only on two coefficients xx’7 and ~/~.
More precisely, introducing the linear combinations
of the density matrix components ~p±± which are
proportional, within a subspace of spin 1 to the mean
values of magnetic moment operators (or Pauli

matrices), one has

In comparison to the relaxation terms usually introduced in the Bloch equations, this shows two differences.
First, the transverse and longitudinal relaxation times T1 and T2 are both equal to 1/~ /~ which is a conse-
quence of the isotropy hypothesis.

Second, the modulus of M is not constant. XX’y(O) takes into account the de-excitation processes, both radia-
tive and collisional (quenching collision transfers to levels others than a and b, which, in the case of the nD
levels of He, are rather important due to the proximity of the nP and nF levels). We shall further simplify the
problem by supposing aay(O) = bbY( 0) = yt o~ and aay( 1 ) = bbY( 1 ) = Yc 1 ~~ since a full calculation shows that this
simplification changes nothing essential. The useful equations are then :
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2/(y~ ~ y~ 1 ~) is then the average time during which the atom remains within one Zeeman sublevel, while 1/y~~
is the average time during which it remains within a whole excited level a or b. Usually y(l) &#x3E;&#x3E; y(O) and the first time
is considerably shorter than the second. Putting (4) into (1 ~ a straightforward calculation leads to

and to similar expressions for bb P + + and bbp _ _, with :

One then finds that, if y( 1) 5~ y(O) (no pure quenching)
the anticrossing signal appears also in a + &#x3E; (and
I b - ~). This is a consequence of the Zeeman transfer.
More important, the anticrossing shape remains

Lorentzian as a function of Ea- - Eb +, but its width
is now

It is the ab Y(1)/y term which explains the anomalous
increase of the width we have found experimentally.
Indeed this term is the ratio between aby(l), the relaxa-
tion time of the coherence between a + ~ and
I b - ), and y, which is an effective relaxation time of

FIG. 1. - Simplified model used to study the effect of relaxation
processes on an anticrossing signal. Wiggly lines correspond to

collision transfers.

the population of these levels. This ratio is equal to 1
at zero pressure for equal lifetimes of a and b, but is
greater than 1 when there are collisions since a

forward-backward transfer between, say, I a - &#x3E;
and a + &#x3E; brings back the population of I a - &#x3E;
but not the coherence between I a - &#x3E; and b + ~.
More precisely, in our experimental case aby(1) - y (1)1
and we shall take

where P is proportional to both the pressure and the
depolarization cross-section, and K is the ratio between
the quenching and the depolarization cross-section,
usually much smaller than 1. All of these expressions
are valid only one can neglect the back transfer from
the quenching levels to a or b. Finally one obtains :

The factor which multiplies 4 1 V 12 varies from 1 at
zero pressure to (K + 1 )/2 K at high pressure. This
last expression is usually &#x3E; 1, since ~ ~ 1. Another

consequence of the formula (5) is the prediction of a
decrease, in the ratio of the polarization to the inten-
sity signal which is independent of the excitation na
and nb :

This depolarization phenomenon has been experi-
mentally verified.

3. Comparison with Bloch’s equations. - A better
insight on these relaxation phenomena can be obtained
by writing down the equations which relate population
and coherence of the anticrossing I a - &#x3E; and b + )
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levels in the case of steady state excitation. We intro-
duce the linear combinations :

These combinations are analogous to, but different
from the expressions (4). In (4) all x and x’ are consis-
tently equal to a and/or b, whereas in (7) there are
mixed expressions corresponding to the populations
of a 2013 ~ and b + ), and to the coherence between
them. Eliminating in (1’) (with dp/dt = 0) the matrix
elements of p corresponding to the non anticrossing
states a + ) and b - ), one obtains (with V real) :

with ~ = nx y//~. The first three equations (8) are
identical to the rotating frame steady state Bloch

equations for the fictitious spin 2 associated to

j a 2013 )&#x3E; and b + ~, with a detuning

a R.F. field B1 = 2 Y/g~cH and a longitudinal time
constant T1 = 1 /y different from the transverse time
constant T2 = 1/~/~. This does not correspond to a
real spatial anisotropy of the relaxation process, as is
evident from eq. (4), but to the above-mentioned
difference of relaxation times 1/aby’&#x3E; for the coherence
between I a - &#x3E; and b + ) (which is the transverse
quantity in (7) and (8)) and 1 /y for their population
difference (which is the longitudinal quantity). The
anomalous increase in width of the anticrossing signal
is then equivalent to the saturation contribution to the
linewidth 2 1 / T2 + (02 T ~ /T2 of the Bloch equa-
tions.

4. Conclusion. - We finally mention that we have
extended this calculation to the pertinent case of the
fine structure anticrossings of the n 1-3D levels of 4 He.
This calculation is somewhat cumbersome and will be

published later, together with more complete experi-
mental results. An example of the fair agreement
between theory and experiment is shown figure 2.
The main point for this letter is that the simple cal-
culation we have outlined here gives all the important
results.
We thank the Service National des Champs Intenses

of Grenoble (S.N.C.I.), which made possible the

experiments reported here.

FIG. 2. - Comparison between theory and experiment of the
width of the anticrossing signal on the 41D and 4 3D levels of 4He.
K = 1 corresponds to what would be expected in the absence of

the factor "y(l)/y in the anticrossing linewidth.
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