
HAL Id: jpa-00231160
https://hal.science/jpa-00231160v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Localized time-dependent perturbations in metals
Annie Blandin, D. Hone, A. Nourtier

To cite this version:
Annie Blandin, D. Hone, A. Nourtier. Localized time-dependent perturbations in metals. Journal de
Physique Lettres, 1975, 36 (4), pp.109-111. �10.1051/jphyslet:01975003604010900�. �jpa-00231160�

https://hal.science/jpa-00231160v1
https://hal.archives-ouvertes.fr


L-109

LOCALIZED TIME-DEPENDENT PERTURBATIONS IN METALS

A. BLANDIN and D. HONE (*), (1), (~) and A. NOURTIER

Laboratoire de Physique des Solides (2),
Université Paris-Sud, Centre d’Orsay, 91405 Orsay, France

Résumé. 2014 La méthode introduite par Keldysh pour traiter les problèmes hors d’équilibre est
appliquée au cas de fortes perturbations localisées dépendant du temps dans les métaux, pertur-
bations observées dans divers phénomènes de surface.

Abstract. 2014 Methods introduced by Keldysh to treat non-equilibrium problems are applied to
strong localized time-dependent perturbations in metals, such as those that arise in various surface
phenomena.

There are many interesting problems in metals
which involve strong local time-dependent perturba-
tions : X-ray absorption edges [1], absorption and
desorption of atoms on surfaces, etc... The present
work was motivated initially by experiments on
ionization probabilities of atoms extracted from
metals by ionic bombardment [2]. These experiments
show that the ejected atoms retain some memory
of the bulk dynamics, to an extent controlled by the
time necessary to cross the surface, as compared
with the characteristic times of charge and spin
dynamics in the bulk. A qualitative discussion of these
effects has already been given [3], and the problem
has been treated within first order perturbation
theory using a time-dependent Anderson Hamil-
tonian [4]. In this model, an atom leaving the surface
is described by a time-dependent admixture matrix
element Vkd, which goes to zero outside the metal.
Therefore, the model can describe the problem of
desorption as well as that of adsorption of atoms on
a surface.

Although the mathematical technique is applicable
to the Hamiltonian just described; for simplicity,
we shall restrict our treatment here to a simpler
model, the Anderson Hamiltonian without spin,
where only the diagonal extra-orbital energy varies
with time :
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This Hamiltonian might describe approximately the
situation at a metal-metal junction : the energy v
in equ. (1) then varies across the junction from zero
to a constant value. Thus, v is a function of position
and becomes a function of time as a consequence of
the motion of the impurity.
For a strong time-dependent perturbation, the

system is in general far from equilibrium. A general
method has been proposed by Keldysh [5] to treat
such non-equilibrium situations. Essentially, this
method introduces a new time ordering, so as to

make possible the use of Wick’s theorem and thereby
diagrammatic techniques and Dyson’s equation. The
times are ordered along a contour from - oo to

+ oo and back to - oo. Therefore, one must specify
not only the time, but also whether it is on the increas-
ing or decreasing branch of the contour, and the
Green’s function G(r, T’) becomes a 2 x 2 matrix
labelled by the branches of the times t and rB It is this
matrix Green’s function which satisfies the Dyson
equation :

G = g + gEG (2)

where the unperturbed Green’s function g and the
self-energy f are also 2 x 2 matrices. In particular,
for both times on the increasing branch we have the
usual causal Green’s functions :

we emphasize that G ~ does not obey a Dyson equation
on the time interval (- oo, + oo) (this would violate
causality). Of the four matrix elements of G, only
two are independent and it is convenient to make a
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canonical transformation to give the functions :

which clearly is a retarded function [6] ; 6’~r, i’)
which is similarly defined as an advanced function ;
and

Gr and Ga satisfy standard Dyson equations and

Integrations over intermediate times have been sup-
pressed here and ~2, E r, El are the non-zero compo-
nents of the transformed self-energy matrix. In

particular, for the perturbation described by Hamil-
tonian (1),

For such a one body potential (in a many electron
system) Ga and G’ satisfy simple one particle equa-
tions ; they do not involve the occupation numbers
and thus the existence of a Fermi surface. G a and G’
are then readily obtained, in particular, for the
Hamiltonian (1). The many-body aspects reside in
the function F which is given by iterative solution
of equ. (6) as :

F = (1 + G a v) f ( 1 + vG r) . (7)

Thus, for our simple model, we have an exact solu-
tion, in terms of explicit integrals.

Let us consider two limiting special cases :

1. SUDDEN SWITCHING OF V : I v(i) = v8(i). -

Clearly, at long times, the Green’s function will be
those appropriate to the Hamiltonian (1) with
v = constant. One finds for ( nd(i) ~ in the long time
limit :

where A is the resonance width defined as usual by : .-

and r~ is the phase shift at the Fermi level correspond- /
ing to the potential Ed + v. This limit is approached 

‘

exponentially at a rate A. The exact expression will 
1

not be given here. 
c

One can remark that there is no singular term being 
c

proportional to t-a. as it arises in the X-ray absorp- I
tion edge [1]. ,

‘

2. SLOWLY VARYING v(r). - When the time scale ]
of variation of v(t) is large compared with I/A, we (

can make a systematic expansion of the Green’s (

functions. The leading terms for nd(i) are given by :

where 11(r) is the phase shift at the Fermi level due
to the instantaneous potential 8d(r) = 8d + vCr), and
Pd(-r) is similarly the instantaneous d spectral density
at the Fermi level for the same potential. In equ. (10),
the first term represents the adiabatic result, corres-
ponding to the potential v(z) (Friedel sum rule). The
second term exhibits a retardation effect.
The same expansion can be applied to the time

variation of the energy. The derivative d  H(-r) )/d1:
is just the force on the atom, F, multiplied by (- u)
where u is the velocity of that atom. If we recall that
all the time dependence arises from the motion of
the atom, we can regard v( -r) = v(x(i)) and 11( -r) as
functions of position x and dr/dr = (dv/dx) u. Using
(10) we get the leading terms of the expansion for the
force F :

The first term is a conservative force associated
with the spatial variation of ~(x). The second term
is a friction term proportional and opposite in sign
to the velocity u of the atom. In the expansion terms
would then appear proportional to U2 and to the
acceleration du/dt of the atom : this last term may
be interpreted as a change of the effective mass of
the atom moving through the medium.
The friction force has been calculated for the case

of an ion moving in a uniform medium [7] : in that
case the friction coefficient is proportional, as it
should be, to the resistivity. For our simple Hamilto-
nian that case is described by a varying V led :

Vkd(t) = Vkd(O) eik.R(t)

where R(t) is the position of the ion at time t. Using
this time dependence, one recovers the quoted
results [7] and a friction term proportional to sin2 1.
We conclude that there exists two different regimes
for the friction.

In summary, we have described a systematic techni-
que for treating strong localized time dependent
perturbations [8]. This can be useful for studying
the motion of particles in inhomogeneous environ-
ments (particularly near surfaces). We have, for

example, shown how to calculate friction forces for
a particular model Hamiltonian; these forces have
usually been treated phenomenologically, though a
completely different a priori calculation has been
done recently by Suhl and coworkers [9]. The method
used here can be extended to other Hamiltonians.
The interesting case of a time dependent V led’ discussed
above, will be published in a forthcoming paper.
It will be particularly relevant for the understanding
of ionization probabilities, absorption and desorption
of atoms on surfaces.
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Finally, we can relate our work to previous studies
on time dependent problems. First, the functional

integral method effectively replaces two body inter-
actions by a fluctuating one-body potential [10].
However, these fluctuations do not depend on a
true time variable; the corresponding Green’s func-
tions do obey a Dyson equation (in contrast to (7~
as discussed above) but they violate causality (in
the pseudotime variable). Second, a truly time

dependent problem arises in the study of X-ray
absorption edges; as discussed by Nozieres and
de Dominicis [1], [11]. Initially, the Hamiltonian is
time-independent and the X-ray response is given
in terms of a two particle Green’s function. Elimina-
tion of deep hole operators introduces an effective
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one-body potential which is suddenly switched on
at time t and off at time t’.
The X-ray problem is thus related to the calculation

of a function 4~(-r, T’; tt’) which obeys a Dyson
equation on the contour (~+00; + oo t’). It is not
a causal function and exhibits singularities which
are linked to the infrared catastrophe first pointed
by Anderson [12]. These singularities arise because
t’ ~ t. In our case on the contrary, G~(T, ’r’), which 

.

is a causal function, obeys a Dyson equation on the 
’

contour (~+00; + oo t) and does not show up
singularities.
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