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COLLOQUE DE PHYSIQUE
Colloque C7, supplément au n°23, Tome 51, ler décembre 1990 C7-209

CURVATURE AND THE GLOBAL STRUCTURE OF INTERFACES IN SURFACTANT-WATER SYSTEMS

S.T. HYDE

Department of Applied Mathematics, Research School of Physical
Sciences, Australian National University, Box 4, Canberra ACT 2601,
Australia

Résumé-La contrainte globale spatiale imposée par la composition d'un systéme
binaire surfactant-eau peut étre exprimée en fonction de la géométrie locale
intrinséque du film de surfactant, si le film est supposé suffisamment
homogéne, c'est d-dire de faible énergie de courbure. Ces relations sont
calculées pour des géométries (quasi-)homogénes hyperboliques, elliptiques
(sphéres) et parabolique (cylindres). Il est suggéré que la cristallinité de
certaines mésophases de surfactants est le résultat de la contrainte homogéne.
Une théorie détaillée des structures rencontrées dans les phases cubiques
bicontinues, ainsi que des techniques expérimentales pour déterminer la
microstructure de ces phases est présentée.

Abstract-The global spatial requirement set by the composition of a binary
surfactant-water system can be expressed as a function of the local intrinsic
geometry of the surfactant film, assuming a reasonably homogeneous £ilm, which
is equivalent to a film of low bending energy. These relations are calculated
for (quasi-)homogeneous hyperbolic, elliptic (spheres) and parabolic
(cylinders) geometries. It is suggested that the crystallinity of some
surfactant mesophases is a resut of the homogeneity constraint. Detailed theory
of structures found in bicontinuous cubic phases, as well as experimental
techniques for deciphering the microstructure of these phases is presented.

1. INTRODUCTION

In order to understand the structures of self-assembled systems, we must first attempt to
delineate as full an ensemble of surfaces as possible, together with some measure of their
likelihood as interfaces within surfactant mixtures. This task is a very complex one, and
the variety of phase behaviour in surfactant systems is a reflection of that complexity. For
now we confine our analyses to what we call homogeneous surfaces. These are intersection-
free two-dimensional orientable surfaces free of self-intersections (embeddings) whose
surface curvatures are as uniform as possible within the geometry.Since the work of Riemann
we know that there are three possible geometries: elliptic (positive Gaussian
curvature),parabolic (zero Gaussian curvature), and hyperbolic (negative Gaussian

curvature). (For an introduction to the ideas of Riemann, see ref. 1. Every patch of a
surface must lie within one of these classes. In general, the local curvatures vary from
patch to patch over the surface. We must distinguish between the geometry of the patch = the
local geometry, which is the domain of differential geometry, and the global structure,
which is the domain of topology. In general, it is impossible to deduce anything of the
global structure from the local geometry. For example, the relative volumes on either side
of an (oriented) minimal surface need not be equal. Yet, any surface patch on a minimal
surface is equally curved in both directions, with no hint of the global asymmetry (for

other examples, see 2. However, if the interface is sufficiently homogeneous, approximate
estimates of the surface's global characteristics can be made. These estimates are exact if
the surface is perfectly homogeneous. For example, the surface to (interior) volume ratios
of spheres and cylinders can be determined from the values of the (constant) Gaussian and
mean curvatures alone.

The variety of interactions in surfactant-water systems can be conveniently subsumed into a
phenomenclogical (internal surface) bending energy, related to the interfacial curvatures

{the intrinsic) geometry, of the surfactant interface 3. In the absence of significant long-
range interactions the equilibrium structure of an actual surfactant/solvent mixture is that
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which mirimises this surface energy, as well as bulk energy contributions. The surface
energy contribution will be minimised when the interfacial shape is exactly that taken up by
a surfactant film in the absence of all global constraints. This ground state is the
preferred local configuration. Curvature deviations away from this locally preferred shape
will incur a bending energy cost, while homogeneous interfaces whose curvatures match those
preferred values will be absolutely favoured. The existence of this bending energy allows us
to draw connections between the local and global structures, since the preferred global
structure is expected to be the most homogeneous global realisation of the local patch,
provided thermal energy content of the system is not too large.

Which surfaces must be included in this analysis? At the crudest level of classification,
elliptic, parabolic and hyperbolic surfaces. Since the surfaces must be as close to
homogeneous as possible, the Gaussian curvature is assumed to be constant, so that the
integral curvature of the surface (contained within a certain volume) is given by:

f KA =KA 4}

which means that the topology, denoted by the genus (within that volume) g, can be
conveniently written by the Gauss-Bonnet theorem 4:

f Kda=2r(2-2g) or g=1- KTT?— 2)

This link between surface geometry and topology suggests that we use the surface genus
(which must be a non-negative integer) as a means to systematically generate a full

catalogue of surface structures 5.

The lowest possible value of the genus - zerc - can be homogeneously achieved by a sphere,
which is the only homogeneous embedded elliptic candidate. Less homogeneous examples of
genus zerc surfaces include ellipsoids.

Surfaces of genus one have vanishing Gaussian curvature, and thus encompass all parabolic
shapes. Homogeneous examples within this class are planes and cylinders*.

If the genus of an interface exceeds unity, the Gaussian curvature must be negative, so that
all such surfaces are hyperbolic. Global realisations of hyperbolic interfaces are only now
being deduced. Recent discoveries of minimal and constant mean curvature surfaces ~ such as

the spectacular examples of Costa 6, Hoffman and Meeks 7, and the beautiful surfaces

discovered by Pinkall and Sterling 8_ suggest the range of shapes still to be found. For
this reason, it is speculative at this stage to suggest the global forms of the most
homogeneous hyperbolic interfaces. It is certain that the mean and (negative) Gaussian

curvatures cannot be simultaneously constant without unphysical self-intersections 9

The best known hyperbolic interfaces are minimal surfaces, whose mean curvature vanishes
everywhere on the surface. Our vocabulary of minimal surfaces includes complete non-periodic
surfaces, and one two and three- periodic surfaces (whose equivalent lattice points define
one two and three dimensional lattices). The presence of catenoidal or planar ends in all
but three-periodic surfaces results in significant regions of low curvature, which disfavour
these surfaces. (For example, while usual images of the catenoid suggest a reasonably smooth

surface, the global surface contains is less homogeneous, see 10.) Of known surfaces of
constant (but nonzero) mean curvature, two-periodic surfaces appear £o be the most
homogeneous. On these speculative grounds, we confine our investigation to these two surface
types as structural candidates within our catalogue of hyperbolic surface shapes, i.e. those
surfaces of genus higher than two.

A periodic surface of genus two {per unit cell) can be constructed by embedding a "wagon
wheel" surface containing four spokes or tunnels within a cube, and reflecting the surface
in all vertical faces to give a square network (figure 1(a)). The genus of this cell is that
of the surface embedded in the three-torus, which is obtained by "gluing" all surface points
separated by a lattice vector (an edge) of the cubic cell. Such an interface can adopt a
range of mean curvatures (figure 1), including the examples of constant mean curvature first

analysed by Lawson 11.

* For the sake of simplicity we assume that the genus is always equal to (1-1/2)Y ) where X
is the Euler characteristic.
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In fact, similar shapes (made up of intersecting rods) were first mooted by Luzzati, as

candidate structures for lipid mesophases

topologically similar surfaces in other surfactant systems

12
k4

13and more recent studies also suggest

14,15. It is important to note

that these surfaces must have non-zero (average) values of mean curvature, so that they
cannot be minimal surfaces. The most homogeneous global embeddings of these surfaces are
parallel stacks of these surfaces, with holes of one layer lying over nodes of its
neighbouring layers, resulting in a global morphology similar to the classical lamellar
phase. An example is the hexagonal genus two surface, which can be uniformly stacked to give
a global structure of three~dimensional rhombohedral symmetry.A body-centred tetragonal

example is shown in figure 2.
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Figure 2: A homogeneocus global embedding of square mesh surfaces, forming a three
dimensional lattice of body-centred tetragonal symmednyg,

A range of two-periodic examples exist, whose inner tunnel networks define periodic

two-

dimensional graphs. We call such surfaces "mesh" surfaces, in keeping with the two-
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dimensional networks formed inside the surfaces. An infinite number of mesh surfaces can be
designed, enclosing a variety of planar networks. Nets of higher coordination than those of
hexagonal (three) and square (four) yield surfaces of genus per unit cell larger than two.

Surfaces of genus three and upwards are sufficiently topologically complex to define three-
dimensional networks. The classic examples are triply periodic minimal surfaces, of genus

16

three per unit cell and upwards These surfaces divide space into two topologically

equivalent interpenetrating tunnel networks. We refer to these surfaces as “strut” surfaces.
The simplest example to visualise is the P-surface, discovered by Schwarz last century
17 :

(figure 3)

Figure 3: A schematic drawing of a conventional unit cell of the simplest infinite periodic
minimal surface (IPMS), known as the P-surface#) +oe,¢fﬁar wibh a vigw of 8 wwit calls,

Many other minimal surfaces of genus three are now known to exist, thanks to the work of
Riemann (the D-surface) 18, and more recent studies by Schoen 19, Lidin 20,21,
and Nesper 22, Koch and Fischer 23,24. The analysis presented by A. Fogden at this workshop
suggests that the catalogue of genus three minimal surfaces is now close to complete (see
Fogden, this workshop), although many more (irregular) surfaces (of higher genus) remain to
be discovered. The geometry of these surfaces can be discerned by construction of a balanced
patch in the assymmetric unit of the space group, leading to exact parametrisation via the

von Schnering

Weierstrass representation 25,(Fogden, this workshop), or more approximate equipotential

22, or truncated equipotential expressions 26.

calculations
Among cubic IPMS alone, a wide variety of topologies are possible. For example, surfaces of
space group symmetry Im3m include the I-WP surface (first discovered by Schoen), of genus
19
) ;

four per primitive unit cell {and nine per conventional cubic cell the genus nine

Neovius surface 27and the 0,C-TO surface of Schoen 27, which has a genus of ten per unit

cell.

We can draw up the following provisional catalogue of homogeneous surface shapes:

# The computer surface drawings in this article are actually trigonometric approximations to
constant curvature surfaces. For more information on these representations of minimal
surfaces, see I.S. Barnes et al. this conference. I thank Ian Barnes for leaving his
equipotential calculation program in Canberra.
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Table I: Catalogue of the most homogeneous surfaces by topolegical class. (The surfaces of
genus >3 are representative only. Many remain to be characterised.

*These entries refer to the genus per unit cell of the surface.

Geometric class topology (genus) global shape symmetry
elliptic 0 sphere
parabolic 1 cylinder
plane
hyperbolic 2* mesh surfaces:
(figure 2) square mesh tetragonal
hexagonal mesh rhombohedral
3* strut gurfaces:
(figure 3) P-surface cubic (Im3m)
gyroid "
(Ia3d)
D~surface = (Pn3m)
HB-surface hexagonal
T-,CLP surface tetragonal
(figure 4) 4* I-WP surface cubic (Im3m)
(figure 5) 9* Neovius surface cubic (Im3m)
10* 0,C-TO surface cubic (Im3m)
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Figure 4 (left): Conventional unit cell of an approximation to the I-WP periodic minimal
surface.

Figure 5 (right): Conventional unit cell of an approximation to the Neovius surface, a
cubic periodic minimal surface.

2. A SIMPLE GEOMETRIC MODEL OF SELF-ASSEMBLY

Given the range of possible microstructures presented in the preceding table, we now
investigate the conditions required for formation of these various interfaces in
surfactant/water mixtures.
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Due to the immiscibilty of surfactant chains with water, above the critical micelle
concentration the surfactant molecules spontaneously associate, in order to isolate the
hydrophobic chains from water. The geometry of the resulting surfactant aggregates can be
described by the structure of the interface between the polar region (which consists of
water and surfactant head-groups) and the hydrophobic region. At the simplest level of
approximation, the (assumed molten) surfactant chains within the interfacial aggregate can
be described by an average molecular shape. This shape is characterised by the "surfactant
parameter"”, which is equal to v/al, where v is the chain volume,a the interfacial area per
surfactant molecule at the hydrophobic-polar interface, and 1 is the chain length normal to

the interface 28,29. Since the chains must pack to leave no area exposed to water, the
curvatures of the interface are dependent on the value of the surfactant parameter. (We
assume that the surfactant head-group volume is small compared with the chain volume, and
the head-groups do not influence the chain aggregation.) The relation between the molecular
shape, the surfactant parameter and the curvature of the aggregated interface is shown in
figure 6.

- Q
" \ E
Interface curved towards Flat interface Interface curved away from

Figure 6: Schematic view of the relation between the surfactant parameter, the molecular
shape, and the curvature of the surfactant interface.

If the surfactant chains lie normal to the interface (and simulations suggest that this is

the case 30) the chain ends lie on parallel surfaces separated from the polar-hydrophobic
interface by a distance 1. The area of surface which is formed by parallel displacement from
an interfacial patch of area a(0) is related to the separation between the interface and the
parallel surface patch, &, and the Gaussian and mean curvatures of the basal interfacial
patch, K and H (figure 7).

Water region Surfactant head group

at «(E)

normal
(axis of increasing &

Figure 7: The relation between the surfactant chain volume and the foliation of parallel
surfaces, separated from the polar-hydrophobic interface by a distance E
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4.

The relation can be written

a(%) = a(0) [1+2HE+KE"] 3)
The sign of the parallel displacement, &, is negative if the displacement is towards the
closest centre of curvature, positive otherwise. The volume occupied by a surfactant chain
is the foliation of parallel surfaces, from the interface up to the parallel surface at the
free chain ends (figure 7). This chain volume is equal to:

1
2
v= f a[ 142HE+KEY dE  so that *- 1+H1+KTl @)
0 a

Equation (4) describes the value of the surfactant parameter in terms of the implicit local
geometry at the polar-hydrophobic interface. Note that the chain length, 1, is a natural
length scale of the curvatures. The surfactant parameter is thus a measure of the preferred
local geometry of the surfactant interface, and constrains the values of the interfacial
curvatures to accommodate the molecular dimensions of the surfactant molecules.

The actual global shape formed by a homogeneous sweeping out of this local surface patch
must partition space into the relative volumes needed to contain the (incompressible) polar
and hydrophobic moieties. These volumes (on the inside and outside of the interface(s))
depend on the composition of the surfactant mixture. Thus, the surfactant parameter (v/al)
and the composition (characterised by the chain volume fraction in the mixture, P) can be
viewed as canonical variables which determine the global and local structures of the
surfactant interface.

For a general surface, there is no connection between the intrinsic geometry of an
interface, and its global form. However, a link between global and local geometry rests on
the observation that the volume (inner and/or outer) formed by a perfectly homogeneous
interface is that defined by all parallel surfaces on the inner/outer side of the interface
up to the nearest centre of curvature. The surfaces traced out by the centres of curvature

to an interface are the focal or pedal surfaces 4. If the surface is homogeneocus, the focal
surface is identical to the parallel surface displaced from the interface by a separation R,
where R is the (smaller) radius of curvature on that side of the interface. Thus the volume
associated with a surface can be calculated by summing over all parallel surfaces to the
centre of curvature. So, if the interface is sufficiently homogeneous, the extrinsic and
intrinsic geometries are linked. In other words, if the surfactant interface is sufficiently
homogeneous, the surfactant parameter is dependent on the composition. In the rest of this
section we derive estimates of the relations between these local and global variables for
the range of surfaces catalogued in Table I.

spheres (g=0)

Since elliptic surfaces are curved exclusively towards the interior volume created by the
surface, the exterior volume is independent of the intrinsic surface geometry. (The outer
volume associated with a sphere is dependent on the density of spheres.) We assume that the
outer volume can be considered as a foliation of parallel surfaces (i.e. larger, concentric
spheres) . This can only be an approximation, since these spheres cannot fill space without
overlap or voids between the spheres.

Consider spherical micelles enclosing the surfactant chains, embedded in a water (plus head-
group) matrix. Since the mean and Gaussian curvatures of a sphere are equal to 1/R and 1/r2?
respectively, the surfactant parameter is given by equation (4):

v
T=l-s o= ®)
al R 3r2 3
irrespective of the surfactant concentration. In order for surfactants to form spherical

micelles, this value of the parameter must be adopted by the chains. This constraint is well

known 28.

If the surfactant molecules aggregate to form the complementary structure: reverse spherical
micelles filled with water, the value of the surfactant parameter must vary with the
concentration of the surfactant-water mixture. From equation (4), the surfactant parameter
is related to the sphere radius, assuming that the chains lie on the set of exterior
parallel surfaces to the sphere:

v 1, P 13 1A
Ii= +R+3R2 sothat o =3( 1'l~:,;(al 1) -1)

The chain and polar volumes related to a surface patch of area A are equal to:
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1. P AR
Venain = All 145 + = and  Vyolar =5~

Thus the polar volume fraction is related to the surfactant parameter by:
9 4 v
1+=1)-1)
2 3 al
D= 6)

9: [, 4v

1 +—(=1)—
2 1 3 al H-b
Cylinders (g=1)

The surfactant parameter required for formation of cylindrical micelles can be exactly
determined, since the inner volume associated with a cylinder is perfectly homogeneous.
Inserting the values of the mean and Gaussian curvatures for a cylinder (whose radius is
equal to the surfactant chain length, 1) into eguation (4) gives:

\4 R
_—_-1.....__+—=—
al 2R 3rz 2 M
The approximate relation for the outer volume is:
Y ctl4E and Vepsine= ALO42L) , Voour = o8 ®)
al 7R chains = 2R’ ’ polar = 3

This gives the relation between the composition of the mixture and the surfactant parameter:
v v
*er Var
a a
¢ i

Y .y ®
1+4(E -1).H

Hyperbolic Interfaces (g>1)

The links between the molecular shape and the composition of the surfactant system are less
obvious for hyperbolic shapes, since general formulae for surface area and enclosed volumes
are not available. However, the technique outlined above can be used to derive exact
relations for (unrealisable) homogeneous hyperbolic interfaces. The applicability of these
calculations to quasi-~homogeneous hyperbolic interfaces can be checked for a few well
characterised hyperbolic surfaces.

For example, data are available for periodic minimal surfaces, which can be utilised to
gauge the accuracy of the approximation of homogeneity. Within this approximation, the
dimensionless surface to volume ratio, S/V2/3, can be derived as a function of the topology
of the surface per unit cell (characterised by the genus per unit cell, g). Since the mean
curvature of minimal surfaces is identically zero, the separation between the interface and
its centre of curvature (on both sides of the interface) is equal to:

— 1 —
R=Afg o R=y 55y @

where K is the value of the Gaussian curvature of the minimal surface per unit cell, and A
is the interfacial area per unit cell. (Note that since we are assuming homogeneous
interfaces, the value of K is equal at all points on the surface). Formula (4) can be
utilised to calculate the volume on one side of the minimal surface (Vi,/2) per unit cell:

V_ [ A 2m(2-2g) A v_2, [ A
27 A 21t(2—2g){1+ 3A 2m(2-2g)’ + i.e. 2 3A 2r(2-2g) 10

so that the dimensionless surface to volume ratio is equal to!

A 3Y2r(2g-2) 28
e ) av

For minimal surfaces of genus three per unit cell, this ratio is estimated to be equal to
2.418 under the assumption of homogeneity. Actual values for genus three IPMS are 2.3451 for

the P-surface, 2.4177 for the D-surface, and 2.4533 for the gyroid 19,31,32. Clearly then,
the assumption of homogeneity is reasonable for these cases, and the analytic techniques
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offer good estimates of the global properties of these surfaces. Unfortunately,
corresponding data for periodic mesh surfaces is not available. However, we assume that this
technique also offers reasonable estimates of the local/global relations for this class of
surfaces.

Mesh surfaces (g=2)

Consider first a stack of mesh surfaces whose interiors are filled with surfactant chains.
This structure consists of layers of chains, studded with pores, embedded in a continuous
matrix of water and surfactant head-groups. In this case, the inner focal distance must be
equal to the chain length, 1, so that:

2
142H1+K1%2=0 and ll=1+H:L+KTl (12)
a
If the outer focal distance is denoted by y:
Ky2

1-2Hy+Ky?=0 and 1%°§E‘-= LHy—-  (13)

where Vpol is the (outer) polar volume associated with a patch on the mesh interface of area
a. These equations imply:

Hi=392 and K12=3-6(—)  (14)
al al

and the ratio between the focal distances:

1
Tones as)
v
3-6(—)
al
The link between the local surfactant parameter and the global composition is thus:
v
al
Q= (16)
v polar -y
— ==
(al ay 1 )

We can see from this equation that such structures require the value of the surfactant
parameter to lie between 1/2 and 2/3, in oxder for the interface to curve towards the chains
(so that the mean curvature is by convention negative).

For values of the surfactant parameter exceeding 2/3, the interface is curved towards the
polar moiety, so that the interior of the mesh layers are occupied by water and surfactant
head-groups. This "reverse" mesh structure contains a continuous chain matrix, interspersed
with porous polar sheets.

The structural changes which occur within the mesh phase as a function of the surfactant
parameter can be related to the range of mean curvatures spanned by these mesh surfaces
(illustrated by the surfaces shown in figure 1). At one extreme, where the surfactant
parameter is just larger than 1/2, the Gaussian curvature (per unit cell) of the interface
is close to zero, while the scaled mean curvature is close to 1/2. At this point the

interface consists of deformed cylinders (similar to Delaunay surfaces 33) just meeting at
their points of closest contact, and the tunnels defining the planar nets are vanishingly
narrow. As the surfactant parameter increases towards 2/3, the mean curvature of the
interface decreases, so that the preferred curvature towards the chains becomes less
pronounced. When the surfactant parameter is identically equal to 2/3, the mean curvature
vanishes, and mesh structures cannot form (since these cannot be minimal surfaces). For
values of the surfactant parameter exceeding 2/3, the interface curves away from the chains
and the curvature towards the polar volume increases continuously. As the magnitude of the
surfactant parameter increases, the Gaussian curvature becomes increasingly negative, so
that the genus (per unit volume) becomes larger. In other words, the density of pore
"defects™ within the layers increases.

Strut surfaces (g=3)

When the surfactant parameter is identically equal to 2/3, the formation of hyperbolic mesh
interfaces is forbidden, since the mean curvature of the interface must vanish; i.e. the
interface is curved equally towards both polar and hydrophobic regions. Consequently, at
this value of the local molecular geometry, the interface must be a (non-planar) minimal
surface.

In fact, at the level of approximation adopted for this analysis, the local/global relation
for strut interfaces separating polar and hydrophobic volumes (equation 16)) is identical to
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that derived above for mesh geometries, since both are approximated by homogeneous
hyperbolic surfaces.

So far, we have considered only surfactant monolayer interfaces, for which the interior and
exterior volumes consist of polar and chain moieties. In general, (reversed or normal)
bilayer interfaces lining the surfaces in the catalogue of Table I are less favourable than
monolayers, since the surfactant parameters required for the formation of the outer
monolayer differ from those in the inner monolayer, resulting in additional inhomogeneities
not present for monolayers. The surfactant parameters for the inner and outer monolayers are
equal to:

v K12 v K12
—) =1-Hl+— ; (= 1+H1 +——
(a1)~ 3 (al)om 3

In the case where the mean curvature vanishes(minimal surfaces), the inner and outer
geometries are (locally) identical, so that equal surfactant parameters can be adopted by
the surfactant molecules in both monolayers. Thus, in addition to the possibility of
monolayers lining minimal surfaces intermediate to normal and reversed mesh structures, we
should consider surfactant bilayers (normal or reversed) lining triply periodic minimal
surfaces.

Such structures are topologically identical to those introduced by Luzzati to describe cubic

phases 34. If a bilayer decorates a periodic minimal surface, the tunnels on both sides of
the surface contain the polar moiety, while the minimal surface defines the centre of the
bilayer; i.e. the free chain ends (figures 8 (a), (b)). This is similar to type II
structures proposed by Luzzati et al. Alternatively, if a reversed bilayer is centred on the
periodic minimal surface, the water and head-groups form a curved layer bisected by the
minimal surface, while the chains line the two interpenetrating tunnel networks defined by
the minimal surface (Luzzati type I), illustrated schematically in figure 8(a), (b).
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Figure 8(a) (left): Schematic picture of the arrangement of chains for curved surfactant
bilayers centred on a minimal surface.

Figure 8(b) (right): Global view of. the structure illustrated in figure 8(a). The water
and head-groups line the two inter-penetrating tunnel networks defined by the minimal

surface. (Luzzati's type II , Tiddy's V2 phases for cubic surfaces 35)

Consider first the case of bilayers lining minimal surfaces (figure 8(a)). The chain volume
fraction is related to the volumes of polar and chain moieties per unit cell (Vpo1 and
Vohain respectively):
‘,dmhw v A
S =—= a7
VpolaI+Vchains avVv

where A and V denote the head-group area per unit cell and the total cell volume.

If the chains lie normal to the interface, we can use parallel surface theory to calculate
the relation between the area on the interface (which is related to a half of the total head
group area, since the aggregate consists of a bilayer) and the head group area. From
equation (3) this relation is:
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Y S
2(1+K1?%)

Using the Gauss-Bonnet theorem we can relate the surface to volume ratioc to the curvature
and the dimensionless surface to volume ratio, S/V2/3l written as &, this equation can be

recast:
3 3
o S22 S _ oK
239 @K VN ey @
Combining equations (17)-(19) gives:

o K12
3m(028)

S as)

(1+K13) L (20)
al
From equation (11) we have:

3
Al 3 [E
2_g3_3’\/—; @D

The surfactant parameter for the molecules in the saddle-shaped bilayer is related to the
Gaussian curvature at the centre of the bilayer by the equation:

2
(14KIT) 3(1- ;,af)
yY_ys___ 2 o5 KP=—% 22)
al sl'a 14KI12 (%_1)

(assuming that the scaled Gaussian curvature is small, or, equivalently, the surfactant
parameter is close to one).

Inserting equations (21) and (22) into (20) yields the approximate relation between the
local and global variables for bilayers lining periodic minimal surfaces:
v

3 —-1
-12¢6 al v
D= 208 328) —v 3 d 23)
G=-1)
at
Using equation (21), we get:
_a v 24)

These structures require the value of the surfactant parameter to exceed unity.

The final structural class within the catalogue of homogeneous hyperbolic aggregates
consists of reversed bilayers lining periodic minimal surfaces. In this case the surfactant
chains line the interpenetrating tunnel networks which are carved out by the minimal surface
and the polar moiety lines the minimal surface (figure 9(a), (b)).

In this case, provided the surfactant chains lie normal to the interface, the head-groups
lie on a parallel surface separated from the minimal surface by the half-thickness of the
polar layer, tp. By analogy with equation (20):

3
0" .Kt,? v 1
—P_(14Kt,2) —= 2
(1K) — » (25)

=2V =@2g

Since
2
v= a(0){(tp+1)(1+K(tP; )

where a(0) is the area of minimal surface related by parallel transport to the head-group
area,

Kt?
) - t(1+ 3" )}
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Substituting equations (26) and (27) into (25) yields the relation between the surfactant
parameter and the surfactant concentration.
v 2 v

1
_ 0_3 (H _1)(§H = §) 5 v o8
V 2r(2g-2) 3 Tal
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The approximate relation for reversed bilayers on periodic minimal surfaces can be
explicitly derived by substituting the surface to volume ratio estimate of equation (21).

Interface

Figure 9(a) (left): A local view of the arrangement of the surfactant bilayer relative to
the minimal surface interface for Luzzati type I or Vi1 structures

Figure 9(b) (right): Global view of a bicontinuous bilayer phase shown in figure 9(a).
The tunnel interiors are filled with surfactant chains, and the polar moiety lines the
minimal suxrface.

3. GLORAL GEOMETRY OF SURFACTANT INTERFACES

The catalogue of strunctural candidates within self-assembled systems encompasses (quasi-
homogeneous) hyperbolic surfaces, as well as the better known elllptlc and parabolic
surfaces. The restriction of (quasi-)homogeneity has been necessary in order to compute the
global characteristics of the interface from its intrinsic geometry. Geometrically, this
restriction is a drastic one, and excludes many more exotic surfaces.

Within our simple model of self-assembly, the bending energy is related to the actual

surfactant parameter which must be adopted by molecules within the film, v/al and the
preferred (relaxed) value of the surfactant parameter, (v/al)g by:

el Yy
Fbend—K{al (al)o} 29)
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within the harmonic approximation. Expansion of this expression in terms of the actual and
preferred mean and Gaussian curvatures gives 36,

Foend = K1 (H-Ho)” + k2 (K-Kg)? (30)

Analysis of the functional form of the bending enexgy [Fogden, Hyde and Lundberg, to be
published], as well as detailed numerical simulations for nonzero spontaneous curvatures
[Ennis and Marcelja, to be published] confirm this form . Note that the expression does not
contain a linear term in the Gaussian curvature (except when the values of the spontaneous
curvatures vanish), and the Gaussian curvature first enters into the bending energy to
quadratic order.

Equation (30) demonstrates that the presence of inhomogeneities - be they mean and Gaussian
curvature variations or chain length variations - give rise to a bending energy cost. (These

inhomogeneities have been described as "frustrations™ 37,38.) Thus, in the absence of
significant bulk energy contributions to the total free energy of a surfactant system, the
homogeneous surfaces listed in Table I are expected to be of lower free energy than other,
less homogeneous surfaces, and the assumption we have invoked in ordex to derive the global
characteristics from the local geometry is precisely that required to minimise the
interfacial energy. We are not concerned here with comparisons of surface free energies of

the various possible interfacial geometries. (This question has been considered in ref 38).
Rather, given suitable bending moduli for the formation of these interfaces, what are the
relative locations of the phases listed in Table I, and how do we account for the symmetries
exhibited by surfactant mesophases?

We have remarked earlier that the exterior volumes formed by spheres and cylinders are not
completely homogeneous. Thus, in the case where the chains £ill this volume, the chain
lengths will vary. (Alternatively, the chain lengths can be uniform, and the interface must
be facetted.) The preferred state of these aggregates is that which minimises these chain
length variations. These lengths can be readily calculated by the construction of Voronoi
(or Dirichlet) cells about each micelle, whose volumes define that region of space closer to

the micelle than to any other micelle 39. The local/global estimates derived in the previous
section are most accurate for Voronoi regions which most closely approximate spheres (for
spherical reverse micelles) and cylinders (for cylindrical reverse micelles), for which the
calculations are exact. In other words, the most homogeneous structures (which minimise the
bending energy) are those with the largest number of faces in the Voronoi cells. Data for
two and three dimensional arrays are given below.

lattice number of faces in Voronoi cell
2-d hexagonal 6
square 4
3~-d body-centred cubic 14 (ref.40)
random close packing 13.3 (ref 45
cubic close packing (fcc) 12 (ref4q

On the basis of these data, cylindrical reverse micelles are expected to pack into (2-d)
hexagonal lattices, and spherical reverse micelles assemble into most homogeneous arrays by
forming body-centred cubic lattices. (It is interesting to note that the random sphere
packing of Bernal is close to optimal homogeneity.) Alternatively, the chain lengths can be
made absolutely uniform by deformation of the cylinders to give hexagonal prisms, and
facetting of the spheres to form truncated octahedra.

The bending energies for a range of global hyperbolic interfaces are more difficult to
determine. Accoxrding to the homogeneity criterion, mesh and strut interfaces are conjectured
to be most favourable. It is relevant to note here that a strut minimal surface exhibiting
5-fold rotational symmetry arises naturally in the context of regular triply-periodic
minimal surfaces. Although the presence of the 5-fold axis means that the global immersion
of this surface in three-dimensional euclidean space will densely £fill space, a sufficiently
small curvilinear coordinate domain is expected to yield an embedded surxface element in
space. Thus, a collection of such elements, smoothly joined, will form a globally. embedded
minimal surface with some characteristics of guasicrystalline lattices. Similarly, it is
possible to imagine a mesh surface, whose pores lie on a Penrose lattice. Stacks of these
surfaces can be arranged to give a global structure similar to the decagonal phase found in
quasicrystalline systems. These strut and mesh surfaces may well be reasonably homogeneous
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compared with translationally ordered (crystalline) interfaces. However,
the classical assumption that crystalline surfaces are most homogeneous.

for now, we adopt

Assuming the validity of this claim, among translationally symmetric surfaces those of
maximal symmetry are expected to be most homogeneous. Consequently, hexagonal and square
mesh surfaces, which lead to three-dimensional rhombohedral and (body-centred ) tetragonal
symmetries are the most favoured interfaces of genus two per unit cell. For (strut) surfaces
of genus three (and higher) per unit cell, cubic symmetries result in the most homogeneous
structures.

These symmetry classes correspond to those found in many surfactant mesophases. Thus,
assuming that translationally ordered surfaces have a more uniform distribution of
curvatures than disordered surfaces, the formation of crystalline mesophases of
rhombohedral, tetragonal and cubic symmetries can be explained as a result of minimisation
of the surface (bending) energy alone.

The analyses of the previous section can be collected into a universal plot of the local
molecular shape as a function of the global interfacial geometry. In order of increasing
surfactant parameter, we expect spherical micelles to form at the minimum possible
surfactant parameter, 1/3. Between this value and 1/2, the spheres elongate to form
ellipsoids,which eventually fuse, giving cylinders (or less homogeneous Delaunay surfaces).
Between values of the surfactant parameter of 1/2 and 2/3, rhombohedral or tetragonal mesh
surfaces can form, consisting of planar perforated sheets of surfactant chains embedded in a
continuous water and head-group matrix. Since the outer volume contains the polar moiety,
the mesh spacing is free to vary, without altering the chain geometry. Thus, the surfactant
parameter is independent of the concentration within this regime. (Equation (16) is
applicable to homogeneous exterior volumes. Since we assume that the sole role of the polar
region is to £ill a volume, this is not applicable here.) For values of the surfactant
parameter exceeding 2/3, the reversed mesh geometry can form, in which case the polar layers
are embedded in a continuous matrix of surfactant chains., In this case then, the composition
uniquely determines the surfactant chain geometry, and there is a one-to-one relation
between local and global variables (expressed by equation (16)). The regions of existence of
these various monolayer structures are shown in figure along with the relations for bilayer
structures.

Spherical
micelles Cylindrical
micelles
Mesh surfaces enclosing chains
I Planar
1.0 T i T T T T
‘ . Nommal bilayers on IPMS
g * Reverse bilaye; IR
* on IPM: Mesh surfaces R —
enclosing water =", ¢ *
. ) -
» Reverse hexag cylindrical

7 micellar array

0.5

0.0

Volume fraction of surfactant chains, ®

Figure 10: Plot of the relation between the local and global phases for the surfaces descrﬂmJ

in Table I.

Reverse spherical
in a bee arrey

N

cetles

1.6
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04" 1.2
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4.STRUCTURAL VARIATION WITHIN CUBIC PHASES

A few experimental studies of the cubic phase of surfactant or lipid systems have revealed
the presence of more than one interfacial structure within the region, with a first order
transition between the distinct phases 42,43,44,45. 8o far, these observations have been
confined to type II cubic phases (consisting of bilayers centred on IPMS, with water in the
tunnels) for which the surfactant parameter is constrained to be larger than unity. Some

feature of these observations can be understood in terms of the simple block model outlined
in the previous sections.

The local/global relation for cubic phases plotted in figure 10 assume perfect homogeneity
of curvatures within periodic minimal surfaces. Within this approximation, the packing

index, Y 03K2g-2) , can be derived from equation (21), assuming constant mean and Gaussian
curvatures over the interface, Vo‘3/(2g-2) = Y91/8= 1 gs00.

In three dimensional euclidean space, some variation of Gaussian curvature must occur over
the minimal surface. Thus the assumption of homogeneity is violated and the packing index

differs from 1.8800. Calculated values of the packing index for some periodic minimal
surfaces are given in Table II.

TABLE II: Packing indices (¥ OSKZgQ))for a range of periodic minimal surfaces.

IPMS genus space group packing index
D-surface 3 Pn3m 1.8796

I-WP surface 4 Im3m 1.8612

gyroid 3 Ia3d 1.9213

CLP surface (c/a=2) 3 C4dy/mmc 1.9430
P-surface 3 Im3m 1.7956
Neovius surface ] Im3m 1.6643 (ref19)
F-RD surface 6 Fra3m 1.6487

(ref32)

We can use these actual values of the packing index to plot the local/glcbal relations for

each IPMS, using equation (23). The plots for this limited range of surfaces are shown in
figure 11.

1.2 14
vi/al

Figure 11: Variation of local and global variables for various IPMS.

0.4

The model suggests that (given a sufficiently slowly varying surfactant parameter with
composition) the phases formed upon water dilution will be in order of decreasing packing
index, in order to accommodate the increasing volume of water, without altering the local
molecular shape significantly.
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Estimates of the relative bending energy costs associated with these various IPMS can be
made as follows. Since the ideal value of the packing index assumes perfect homogeneity, the
difference between the actual and ideal values of the packing index reflects the degree of
homogeneity of the IPMS. Using this comparison, the surfaces listed in Table III have been
arranged in order of decreasing homogeneity,and increasing bending energy cost. A general
trend of decreasing homogeneity with increasing genus per unit cell can be discerned, with
the exception of the I-WP surface. It is interesting to note that the genus four I-WP

* : s N
surface {(not considered by Sadoc and Charvolin 46) is expected to be more stable than the
genus three P-surface . Although recent investigations of a pseudo-binary surfactant/water

cubic phase45 suggest that the bilayer decorates the P-~surface for a phase of Im3m symmetry
(which is that of both the P- and I-WP surfaces), this result is less certain for other
systems. For example, structural data for the cubic phase found in the binary SDS/water

system,ls(probably the best-studied system to date) is difficult to reconcile with the P-

surface 47.

Since the packing index of the D-surface is closest to that of an ideal homogeneous minimal
surface, the D-surface is expected to be the most stable (cubic) phase. As the rigidity of
the bilayers decreases (so that they can tolerate increasingly large inhomogeneities), the
progression:

D-surface (Pn3m) -> I-WP surface (Im3m)
or, for still lower rigidities:
gyroid (Ia3d)->D-surface (Pn3m)->I-WP surface (Im3m)->P-surface (Im3m).

While this simple model cannot hope to reproduce all the details of cubic phase formation,
it is striking to compare the symmetries of cubic phases in surfactant/water and lipid/water

systems with those listed above 48,49. The space groups Im3m, Pn3m and Ia3d abound, and
transitions from Pn3m->Im3m and Ia3d->Pn3m have been observed in a number of systems.

2.EXPERIMENTAL DETERMINATION OF MICROSTRUCTURE

Complementary to these theoretical studies of possible aggregate microstructures are
experimental investigations of these phases. The principal probe of microstructure has been
small angle scattering of X-rays or neutrons. Since the interfaces are usually undergoing
thermal fluctuations the assignation of microstructure is very difficult. Scattering data
from crystalline mesophases usually result in about a dozen Bragg reflections at best,
compared with many times more reflections from atomic crystals. Ironically, despite the
introduction of intense synchrotron sources, the classical X-ray investigations into
lipid/water mesophases by Luzzati's group almost thirty years ago remain the definitive
studies.

According to the approach espoused here, the microstructure can be characterised by the
symmetry and topology per unit cell of the interface. (It is usually possible to decide
whether the interface consists of monolayers or bilayers of surfactant on topological
grounds 47.) The symmetry of the interface can be determined from the relative peak spacings
(given a sufficient number of peaks), while the topology of the interface is directly
related to the relative intensities of the peaks,which are more difficult to determine with
accuracy.

For crystalline hyperbolic interxfaces, we can use parallel surface theory to estimate the
interfacial topology from measurements of the swelling of the unit cell as a function of
composition 45 This technique obviates the need to measure peak intensities and relies only
on measurements of the peak positions as a function of the water content of the sample. The
technique requires estimates of the head-group area per unit cell, A, (which can be
calculated from the head-group area per surfactant molecule and the composition and the unit
cell volume) and the chain length, 1.

Using equation (18) together with the Gauss-Bonnet theorem, for bilayers lining an IPMS of
genus g per unit cell:

* or genus seven per conventional unit cell -
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2(1+K1%) A-4n(2-2g)1

The dimensionless surface to volume ratio is related to the lattice parameter of the cell
{assumed to be cubic foz»simplicity) by:

o 204K1De’  g(q4 4722917
A-4m(2-2g)1%

But the head-group area per unit cell is much larger than 4n(2—2g)12, so that we can make
the approximation:
A . 4m2-2912
6~ (1- __(_g)_) (32)
2 A
2

This equation suggests a useful "master plot™. If a/202is plotted against 2.7.12/02 for a
range of compositions, the plot should be linear, with slope equal to (2-2g), and intercept
equal to the dimensionless surface to volume ratio, 6. These two structural characteristics
serve to completely specify the interfacial geometry, since the surface to volume ratio is
characteristic of both the symmetry and the topology.

This technique has been used to decipher the microstructures within the cubic phase region
of the (pseudo-binary) surfactant mixture consisting of the double chained cationic
quaternary ammonium surfactant didodecyldimethylammonium bromide (DDAB)/cyclohexane/water.
At the compositions required for formation of (room temperature) cubic phases, measurements
indicate that all the alkane solvent is absorbed into the chain region, thereby swelling the
hydrophobic volume and increasing the magnitude of the surfactant parameter to a value

marginally larger than unity 45 The surfactant molecular dimensions have been estimated

from those inferred from measurements of the neighbouring lamellar phase 50. The resulting
master plot for a range of samples within the cubic phase region is shown in figure 12(a).
The linear plot reveals at a glance the presence of two distinct structures,. Magnifications
of the two regions are shown in figures 12 (b) and (c). The theoretical lines for IPMS whose
symmetries are those measured are also shown. The data indicate the presence of bilayers
lying on the D-surface, and, at higher water content, the P-surface. It is important to note
that the linear character of the plots confirm the proposed structural class, viz. bilayers
lying on IPMS.

A similar relation between the lattice parameters and the composition can be deduced for the
complementary structure, consisting of reversed bilayers lining IPMS:

_ A 4m2-29)?
o~—(I-——5=") (33)

200

If the surfactant parameter is close to unity, the half-thickness of the polar layer, tp,
can be related to the polar volume fraction:

3¢, (1+—Kﬁ2—)
P 21.0
Gpotar = ————— 5o that =L (34)
2(ty+1) (3-2Ppolar)
This yields the approximate master plot egquation:
2g) A2D o
o= _A_ - 47‘(2AZg) polar 2) (35)
202 (3-2Dpotar)

similar relations can be derived for mesh structures, offering a useful technique to
distinguish between these phases and lamellar phases (which should exhibit a linear swelling
with concentration}.
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Figure 12 (from top to bottom): (a) Master plot, using equation (32) for cubic phase data
measured in the pseudo-binary DDAB/cyclohexane/water system. A, t and o refer to the head-
group area per unit cell, the (oil swollen) chain length and the cubic lattice parameter.
(b), (c): Magnification of the two distinct region in figure 12 (a).

& . CONCLUSIONS

The purpose of this paper has been to quantify the dual demands on any interfacial geometry
imposed by local constraints - set by the preferred architecture of the surfactant molecules
- and the global constraint set by the composition of the mixture. Under the crude
assumption of fixed molecular dimensions and rigid interfaces, the plots of figures 10 and
11 are equivalent offer complete description of the phases formed as a function of these
canonical variables.

Of course, surfactant molecules are not blocks of rigid architecture, and the rigidity of
these films is a complex function of a range of surface forces, the usual thermodynanmic
variables and electrostatic interactions. The enormous variety of surfactant and lipid
species encompasses the complete span of behaviour; from rigid short-chained ionic
surfactants, whose molecular shape is relatively insensitive to the sclution conditions
{such as DDAB), to floppy nonionic polyoxyethylene molecules,whose head-groups occupy an

appreciable volume compared with the chains 51. Self-assembled structures of the former
class conform best to the assumption inherent in the geometrical analysis described in this
paper. The latter class are closer to block copolymers, where the preferred chain lengths
and interfacial areas per molecule are set by chain entropy considerations.
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It is interesting to note that the phase behaviour of copolymers in solution is
qualitatively similar to that of surfactants. The rich variety of hyperbolic interfaces is
only now being recognised. Just as was the case in surfactant science until a few years ago,
our familiarity with elliptic and hyperbolic interfaces led to the mistaken assignation of
these hyperbolic phases in terms of the more classical structures.

Recently, a bicontinuous cubic phase consisting of an interface which resembles the D-
surface has been seen in block copolymer systems of both linear diblock and star diblock

architecture552,53. Also, recent observations indicate the phase progression from lamellar -
> mesh -> strut architecture in block copolymers in solution [Hyde, Koizumi, Hasegawa and
Hashimoto, in preparation]. Theoretical work suggests that these phases too can be
understood from a combination of local and global constraints (whereas the locally preferred
interfacial geometry is invariably elliptic for these systems). So, at both extremes of
definition of the molecular shape, the aggregation behaviour exhibit common features. The
presence of hyperbolic interfaces in these systems is a challenge to our powers of geometric
intuition. The variety of forms found under the crude assumptions outlined here suggest the
richness that will be found in nature.
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