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COLLOQUE DE PHYSIQUE 
Colloque C7, supplbment au n023, Tome 51, ler dbcembre 1990 

CURVATURE AND THE GLOBAL STRUCTURE OF INTERFACES IN SURFACTANT-WATER SYSTEMS 

S.T. HYDE 

Department o f  Applied Mathematics, Research School o f  Physical 
Sciences,  Austral ian National Univer s i t y ,  Box 4 ,  Canberra ACT 2601,  
Austra l ia  

Rh,un&-La contrainte globale spatiale imposke par la composition d'un systeme 
binaire surfactant-eau peut etre exprimbe en fonction de la g8ombtrie locale 
intrinsbque du film de surfactant, si le film est suppose suffisamment 
homog&ne, c'est &-dire de faible Bnergie de courbure. Ces relations sont 
calcul6es pour des gkom6tries (quasi-)homog&nes hyperboliques, elliptiques 
(sphbres) et parabolique (cylindres). I1 est sugg6re que la cristallinite de 
certaines mksophases de surfactants est le rksultat de la contrainte homog&ne. 
Une thkorie dktaillke des structures rencontrkes dans les phases cubiques 
bicontinues, ainsi que des techniques experimentales pour determiner la 
microstructure de ces phases est prksentke. 

Abstract-The global spatial requirement set by the composition of a binary 
surfactant-water system can be expressed as a function of the local intrinsic 
geometry of the surfactant film, assuming a reasonably homogeneous film, which 
is equivalent to a film of low bending energy. These relations are calculated 
for (quasi-)homogeneous hyperbolic, elliptic (spheres) and parabolic 
(cylinders) geometries. It is suggested that the crystallinity of some 
surfactant mesophases is a resut of the homogeneity constraint. Detailed theory 
of structures found in bicontinuous cubic phases, as well as experimental 
techniques for deciphering the microstructure of these phases is presented. 

In order to understand the structures of self-assembled systems, we must first attempt to 
delineate as full an ensemble of surfaces as possible, together with some measure of their 
likelihood as interfaces within surfactant mixtures. This task is a very complex one, and 
the variety of phase behaviour in surfactant systems is a reflection of that complexity. For 
now we confine our analyses to what we call homogeneous surfaces. These are intersection- 
free two-dimensional orientable surfaces free of self-intersections (ernbeddings) whose 
surface curvatures are as uniform as possible within the geometry.Since the work of Riemann 
we know that there are three possible geometries: elliptic (positive Gaussian 
curvature),parabolic (zero Gaussian curvature), and hyperbolic (negative Gaussian 

curvature) . (For an introduction to the ideas of Riemann, see ref. l .  Every patch of a 
surface must lie within one of these classes. In general, the local curvatures vary from 
patch to patch over the surface. We must distinguish between the geometry of the patch - the 
local geometry, which is the domain of differential geometry, and the global structure, 
which is the domain of topology. In general, it is impossible to deduce anything of the 
global structure from the local geometry. For example, the relative volumes on either side 
of an (oriented) minimal surface need not be equal. Yet, any surface patch on a minimal 
surface is equally curved in both directions, with no hint of the global asymmetry (for 

other examples, see L. However, if the interface is sufficiently homogeneous, approximate 
estimates of the surface's global characteristics can be made. These estimates are exact if 
the surface is perfectly homogeneous. For example, the surface to (interior) volume ratios 
of spheres and cylinders can be determined fromthe values of the (constant) Gaussian and 
mean curvatures alone. 

The variety of interactions in surfactant-water systems can be conveniently subsumed into a 
phenomenological (internal surface) bending energy, related to the interfacial curvatures 

(the intrinsic) geometry, of the surfactant interface 3 .  In the absence of significant long- 
range interactions the equilibrium structure of an actual surfactant/solvent mixture is that 
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which minimises this surface energy, as well as bulk energy contributions. The surface 
energy contribution will be minimised when the interfacial shape is exactly that taken up by 
a surfactant film in the absence of all global constraints. This ground state is the 
preferred local configuration, Curvature deviations away from this locally preferred shape 
will incur a bending energy cost, while homogeneous interfaces whose curvatures match those 
preferred values will be absolutely favoured. The existence of this bending energy allows us 
to draw connections between the local and global structures, since the preferred global 
structure is expected to be the most homogeneous global realisation of the local patch, 
provided thermal energy content of the system is not too large. 

Which surfaces must be included in this analysis? At the crudest level of classification, 
elliptic, parabolic and hyperbolic surfaces. Since the surfaces must be as close to 
homogeneous as possible, the Gaussian curvature is assumed to be constant, so that the 
integral curvaiure of the surface (contained within a certain volume) is given by: 

which means that the topology, denoted by the genus (within that volume) g, can be 
conveniently written by the suss-Bonnet theorem 4: 

K.A K da = 2x(2-2g) or g = l- - 
4a (2) 

This link between surface geometry and topology suggests that we use the surface genus 
(which must be a non-negative integer) as a means to systematically generate a full 

catalogue of surface structures 5 .  

The lowest possible value of the genus - zero - can be homogeneously achieved by a sphere, 
which is the only homogeneous embedded elliptic candidate. Less homogeneous examples of 
genus zero surfaces include ellipsoids. 

Surfaces of genus one have vanishing Gaussian curvature, and thus encompass all parabolic 
shapes. Homogeneous examples within this class are planes and cylinders*. 

If the genus of an interface exceeds unity, the Gaussian curvature must be negative, so that 
all such surfaces are hyperbolic. Global realisations of hyperbolic interfaces are only now 
being deduced. Recent discoveries of minimal and constant mean curvature surfaces - such as 
the spectacular examples of Costa 6,  Hoffman and Meeks 7, and the beautiful surfaces 

discovered by Pinkall and Sterling - suggest the range of shapes still to be found. For 
this reason, it is speculative at this stage to suggest the global forms of the most 
homogeneous hyperbolic interfaces. It is certain that the mean and (negative) Gaussian 

curvatures cannot be simultaneously constant without unphysical self-intersections 

The best known hyperbolic interfaces are minimal surfaces, whose mean curvature vanishes 
everywhere on the surface. Our vocabulary of minimal surfaces includes complete non-periodic 
surfaces, and one two and three- periodic surfaces (whose equivalent lattice points define 
one two and three dimensional lattices). The presence of catenoidal or planar ends in all 
but three-periodic surfaces results in significant regions of low curvature, which disfavour 
these surfaces. (For example, while usual images of the catenoid suggest a reasonably smooth 

surface, the global surface contains is less homogeneous, see l'.) Of known surfaces of 
constant (but nonzero) mean curvature, two-periodic surfaces appear to be the most 
homogeneous. On these speculative grounds, we confine our investigation to these two surface 
types as structural candidates within our catalogue of hyperbolic surface shapes, i.e. those 
surfaces of genus higher than two. 

A periodic surface of genus two (per unit cell) can be constructed by embedding a "wagon 
wheel" surface containing four spokes or tunnels within a cube, and reflecting the surface 
in all vertical faces to give a square network (figure l(a)). The genus of this cell is that 
of the surface embedded in the three-torus, which is obtained by "gluing" all surface points 
separated by a lattice vector (an edge) of the cubic cell. Such an interface can adopt a 
range of mean curvatures (figure l), including the examples of constant mean curvature first 

analysed by Lawson l1 

* For the sake of simplicity we assume that the genus is always equal to (1-1/2~ ) where X 
is the Euler characteristic. 



Figure 1: A variety of mesh surfaces of varying mean curvature. 

In fact, similar shapes (made up of intersecting rods) were first mooted by Luzzati, as 

candidate structures for lipid mesophases 12, l3 and more recent studies also suggest 

topologically similar surfaces in other surfactant systems 14, 15. It is important to note 
that these surfaces must'have non-zero (average) values of mean curvature, so that they 
cannot be minimal surfaces. The most homogeneous global embeddings of these surfaces are 
parallel stacks of these surfaces, with holes of one layer lying over nodes of its 
neighbouring layers, resulting in a global morphology similar to the classical lamellar 
phase. An example is the hexagonal genus two surface, which can be uniformly stacked to give 
a global structure of three-dimensional rhombohedral synunetry.A body-centred tetragonal 
example is shown in figure 2. 

Figure 2: A homogeneous global embedding of square mesh surfaces, forming a three 
dimensional lattice of body-centred tetrag~nal$~~-~?. 

A range of two-periodic examples exist, whose inner tunnel networks define periodic two- 
dimensional graphs. We call such surfaces "mesh" surfaces, in keeping with the two- 
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dimensional networks formed inside the surfaces. An infinite number of mesh surfaces can be 
designed, enclosing a variety of planar networks. Nets of higher coordination than those of 
hexagonal (three) and square (four) yield surfaces of genus per unit cell larger than two. 

Surfaces of genus three and upwards are sufficiently topologically complex to define three- 
dimensional networks. The classic examples are triply periodic minimal surfaces, of genus 

three per unit cell and upwards 16. These surfaces divide space into two topologically 
equivalent interpenetrating tunnel networks. We refer to these surfaces as "strut" surfaces. 
The simplest example to visualise is the P-surface, discovered by Schwarz last century 

(figure 3)  17. 

Figure 3: A schematic drawing of a conventional unit cell of the simplest infinite periodic 
minimal surface (IPMS), known as the P-surface#, -kcy&ar w;k a via* cf 8 a'b. 

Many other minimal surfaces of genus three are now known to exist, thanks to the work of 

Riemann (the D-surface) l*, and more recent studies by Schoen 19, Lidin 20, 21, von Schnering 

and Nesper 22, Koch and Fischer 23, 24. The analysis presented by A. Fogden at this workshop 
suggests that the catalogue of genus three minimal surfaces is now close to complete (see 
Fogden, this workshop), although many more (irregular) surfaces (of higher genus) remain to 
be discovered. The geometry of these surfaces can be discerned by construction of a balanced 
patch in the assymmetric unit of the space group, leading to exact parametrisation via the 

Weierstrass representation 25, (Fogden, this workshop), or more approximate equipotential 
26 calculations 22, or truncated equipotential expressions . 

Among cubic IPMS alone, a wide variety of topologies are possible. For example, surfaces of 
space group symmetry Im3m include the I-WP surface (first discovered by Schoen), of genus 

four per primitive unit cell (and nine per conventional cubic cell) 19; the genus nine 

Neovius surface 27 and the 0,C-TO surface of Schoen 27, which has a genus of ten per unit 
cell. 

We can draw up the following provisional catalogue of homogeneous surface shapes: 

# The computer surface drawings in this article are actually trigonometric approximations to 
constant curvature surfaces. For more information on these representations of minimal 
surfaces, see I.S. Barnes et al. this conference. I thank Ian Barnes for leaving his 
equipotential calculation program in Canberra. 



Table I: Catalogue of the most homogeneous surfaces by topological class. (TlYe surfaces of 
genus >3 are representative only. Many remain to be characterised. 
*~hese entries refer to the genus per unit cell of the surface. 

Geometric class topoloqv (uenus) ulobal shape svnrmstry 

elliptic 0 sphere 
parabolic 1 cylinder 

plane 

hyperbolic 2 * mesh.surfaces: 
(figure 2) square mesh tetragonal 

3 * strut: 
(figure 3) P-surface cubic (Im3m) 

gyroid 
(Ia3d) 

D-surf ace " (Pn3m) 
H-surface hexagonal 
T-,CLP surface tetragonal 

(figure 4) 4 * I-WP surface cubic (Im3m) 

(figure 5 )  9 *  Neovius surface cubic (Im3m) 
10* 0,C-TO surface cubic (Im3m) 

Figure 4 (left): Conventional unit cell of an approximation to the I-WP periodic minimal 
surf ace. 
Figure 5 (tight): Conventional unit cell of an approximation to the Neovius surface, a 
cubic periodic minimal surface. 

Given the range of possible microstructures presented in the preceding table, we now 
investigate the conditions required for formation of these various interfaces in 
surfactant/water mixtures. 



C7-214 COLLOQUE DE PHYSIQUE 

Due t o  t h e  immiscibilty of sur fac tan t  chains with water, above t h e  c r i t i c a l  micel le  
concentration t h e  sur fac tan t  molecules spontaneously associate ,  i n  order  t o  i s o l a t e  t h e  
hydrophobic chains from water.  The geometry of t h e  r e s u l t i n g  sur fac tan t  aggregates can be 
described by t h e  s t r u c t u r e  of t h e  i n t e r f a c e  between t h e  polar  region (which cons i s t s  of 
water and sur fac tan t  head-groups) and t h e  hydrophobic region. A t  t h e  simplest l eve l  of 
approximation, t h e  (assumed molten) sur fac tan t  chains within t h e  i n t e r f a c i a l  aggregate can 
be described by an average molecular shape. This shape is charac te r i sed  by t h e  "surfactant  
parameter", which i s  equal  t o  v/al ,  where v  is  t h e  chain volume,a t h e  i n t e r f a c i a l  area per 
sur fac tan t  molecule a t  t h e  hydrophobic-polar in te r face .  and 1 i s  t h e  chain lenath normal t o  - - 
t h e  i n t e r f a c e  28, 29. Since t h e  chains must pack t o  leave no area exposed t o  water, t h e  
curvatures of t h e  i n t e r f a c e  a r e  dependent on t h e  value of t h e  sur fac tan t  parameter. (We 
assume t h a t  t h e  sur fac tan t  head-group volume is  small compared with t h e  chain volume, and 
t h e  head-groups do not inf luence t h e  chain aggregation.) The r e l a t i o n  between t h e  molecular 
shape, the  sur fac tan t  parameter and t h e  curvature of t h e  aggregated i n t e r f a c e  is shown i n  
f igure  6 .  

F i g u r e  6:  Schematic view of t h e  r e l a t i o n  between t h e  sur fac tan t  parameter, t h e  molecular 
shape, and t h e  curvature of t h e  sur fac tan t  in te r face .  

I f  t h e  sur fac tan t  chains l i e  normal t o  t h e  i n t e r f a c e  (and s imulat ions suggest t h a t  t h i s  is  

t h e  case 30) t h e  chain ends l i e  on p a r a l l e l  surfaces separated from t h e  polar-hydrophobic 
i n t e r f a c e  by a  d i s tance  1. The area of surface which is  formed by p a r a l l e l  displacement from 
an i n t e r f a c i a l  patch of area a ( 0 )  i s  r e l a t e d  t o  t h e  separat ion between t h e  i n t e r f a c e  and t h e  

p a r a l l e l  sur face  patch, 5 ,  and t h e  Gaussian and mean curvatures  of t h e  basa l  i n t e r f a c i a l  
patch, K and H ( f igure  7 ) .  

F i g u r e  7 :  The r e l a t i o n  between t h e  sur fac tan t  chain volume and t h e  f o l i a t i o n  of p a r a l l e l  
surfaces, separated from t h e  polar-hydrophobic i n t e r f a c e  by a  d i s tance  5. 



The r e l a t i o n  can be wr i t t en  4: 

a({) = a(0) [ I + Z H ~ + K ~ I  (3) 
The s ign  of t h e  p a r a l l e l  displacement, 5,  i s  negative i f  t h e  displacement is towards the 
c l o s e s t  cen t re  of curvature, pos i t ive  otherwise. The volume occupied by a sur fac tan t  chain 
i s  t h e  f o l i a t i o n  of p a r a l l e l  surfaces,  from t h e  in te r face  up t o  t h e  p a r a l l e l  surface a t  the  
f r e e  chain ends ( f i g u r e  7 ) .  This chain volume is  equal t o :  

v 
v =l a r 1 + 2 ~ ~ + ~ ~ ~  d l  so that - = 

K12 l + H l t  
a1 3 (4) 

Equation ( 4 )  describes t h e  value of t h e  sur fac tan t  parameter i n  terms of t h e  impl ic i t  loca l  
geometry a t  t h e  polar-hydrophobic in te r face .  Note t h a t  t h e  chain length, 1, i s  a na tura l  
length s c a l e  of t h e  curvatures .  The sur fac tan t  parameter i s  thus a measure of t h e  preferred 
l o c a l  geometry of t h e  sur fac tan t  in te r face ,  and constrains  t h e  values of t h e  i n t e r f a c i a l  
curvatures  t o  accomodate t h e  molecular dimensions of t h e  sur fac tan t  molecules. 

The a c t u a l  global  shape formed by a homogeneous sweeping out  of t h i s  l o c a l  surface patch 
must p a r t i t i o n  space i n t o  t h e  r e l a t i v e  volumes needed t o  contain t h e  (incompressible) polar 
and hydrophobic moiet ies .  These volumes (on t h e  ins ide  and outside of t h e  i n t e r f a c e ( s ) )  
depend on t h e  composition of t h e  sur fac tan t  mixture. Thus, the  sur fac tan t  parameter ( v / a l )  
and t h e  composition (character ised by t h e  chain volume f r a c t i o n  i n  t h e  mixture, a) can be 
viewed a s  canonical var iab les  which determine the  global  and l o c a l  s t r u c t u r e s  of t h e  
sur fac tan t  in te r face .  

For a general  surface,  t h e r e  i s  no connection between t h e  i n t r i n s i c  geometry of an 
in te r face ,  and i t s  global  form. However, a l i n k  between global  and l o c a l  geometry r e s t s  on 
t h e  observation t h a t  t h e  volume ( inner  and/or outer)  formed by a p e r f e c t l y  homogeneous 
i n t e r f a c e  is  t h a t  def ined by a l l  p a r a l l e l  surfaces on t h e  inner/outer  s i d e  of t h e  in te r face  
up t o  t h e  nearest  cen t re  of curvature. The surfaces t raced  out by t h e  cen t res  of curvature 

t o  an i n t e r f a c e  a r e  t h e  f o c a l  o r  pedal surfaces 4.  I f  t h e  surface is homogeneous, t h e  focal  
surface i s  i d e n t i c a l  t o  t h e  p a r a l l e l  surface displaced from t h e  i n t e r f a c e  by a separat ion R, 
where R i s  t h e  (smaller)  radius of curvature on t h a t  s i d e  of t h e  in te r face .  Thus t h e  volume 
assoc ia ted  with a sur face  can be ca lcu la ted  by summing over a l l  p a r a l l e l  surfaces t o  t h e  
c e n t r e  of curvature. So, i f  t h e  i n t e r f a c e  i s  s u f f i c i e n t l y  homogeneous, t h e  e x t r i n s i c  and 
i n t r i n s i c  geometries a r e  l inked.  In o ther  words, i f  t h e  sur fac tan t  i n t e r f a c e  i s  s u f f i c i e n t l y  
homogeneous, t h e  sur fac tan t  parameter i s  dependent on t h e  composition. In t h e  r e s t  of t h i s  
sec t ion  we der ive  est imates  of t h e  r e l a t i o n s  between these  l o c a l  and g loba l  var iab les  f o r  
t h e  range of surfaces catalogued i n  Table I. 

spheres (g=O) 
Since e l l i p t i c  surfaces a r e  curved exclusively towards t h e  i n t e r i o r  volume c rea ted  by the  
surface,  t h e  e x t e r i o r  volume is  independent of t h e  i n t r i n s i c  sur face  geometry. (The outer  
volume associated with a sphere is  dependent on t h e  dens i ty  of spheres .)  We assume t h a t  the  
ou te r  volume can be considered a s  a f o l i a t i o n  of p a r a l l e l  surfaces ( i . e .  l a r g e r ,  concentric 
spheres ) .  This can only be an approximation, s ince these  spheres cannot f i l l  space without 
overlap o r  voids between t h e  spheres. 

Consider spher ica l  micel les  enclosing t h e  sur fac tan t  chains, embedded i n  a water (plus  head- 
group) matrix. Since t h e  mean and Gaussian curvatures  of a sphere a r e  equal  t o  1/R and l l ~ '  
r e s ~ e c t i v e l v ,  t h e  sur fac tan t  parameter is  given by equation ( 4 ) :  

i r r e s p e c t i v e  of t h e  sur fac tan t  concentration. In  order  f o r  sur fac tan ts  t o  form spher ica l  
micel les ,  t h i s  value of t h e  parameter must be adopted by t h e  chains.  This cons t ra in t  i s  well 

known 28. 

I f  t h e  sur fac tan t  molecules aggregate t o  form t h e  complementary s t r u c t u r e :  reverse spherical  
micel les  f i l l e d  with water, t h e  value of t h e  sur fac tan t  parameter must vary with t h e  
concentration of t h e  surfactant-water mixture. From equation (41, t h e  sur fac tan t  parameter 
i s  r e l a t e d  t o  t h e  sphere radius,  assuming t h a t  t h e  chains l i e  on t h e  s e t  of e x t e r i o r  
p a r a l l e l  surfaces t o  t h e  sphere: 

The chain and po la r  volumes r e l a t e d  t o  a sur face  patch of area A a r e  equal  t o :  
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Thus the polar volume fraction is related to the surfactant parameter by: 

W*-l-l, 
cp= (6) 

Cylinders (g=l) 
The surfactant parameter required for formation of cylindrical micelles can be exactly 
determined, since the inner volume associated with a cylinder is perfectly homogeneous. 
Inserting the values of the mean and Gaussian curvatures for a cylinder (whose radius is 
equal to the surfactant chain length, 1) into equation (4) gives: 

The approximate relation for the outer volume is: 
v -= 1 1 AR 1 +- and VC-=A1(1+) 9Vplar=2 
a1 2R 2R (8) 

This gives the relation between the composition of the mixture and the surfactant parameter: 
v v 4(- -l).- 
a1 a1 cp= 

v v (8) 
1+4(- -l).- 

a1 a1 

Hyperbolic Interfaces (g>l) 
The links between the molecular shape and the composition of the surfactant system are less 
obvious for hyperbolic shapes, since general formulae for surface area and enclosed volumes 
are not available. However, the technique outlined above can be used to derive exact 
relations for (unrealisable) homogeneous hyperbolic interfaces. The applicability of these 
calculations to quasi-homogeneous hyperbolic interfaces can be checked for a few well 
characterised hyperbolic surfaces. 

For example, data are available for periodic minimal surfaces, which can be utilised to 
gauge the accuracy of the approximation of homogeneity. Within this approximation, the 
dimensionless surface to volume ratio, s/v2/3, can be derived as a function of the topology 
of the surface per unit cell (characterised by the genus per unit cell, g). Since the mean 
curvature of minimal surfaces is identically zero, the separation between the interface and 
its centre of curvaze (on both sides of the interface) is equal to: 

A 
(9) 

where K is the value of the Gaussian curvature of the minimal surface per unit cell, and A 
is the interfacial area per unit cell. (Note that since we are assuming homogeneous 
interfaces, the value of K is equal at all points on the surface). Formula ( 4 )  can be 
utilised to calculate the volume on one side of the minimal surface (V1/2) per unit cell: 

(10) 
27c(2-2g) 

so that the dimensionless surface to volume ratio is equal to: 

vm 4 
(11) 

For minimal surfaces of genus three per unit cell, this ratio is estimated to be equal to 
2.418 under the assumption of homogeneity. Actual values for genus three IPMS are 2.3451 for 

the P-surface, 2.4177 for the D-surface, and 2.4533 for the gyroid 19, 31, 32. Clearly then, 
the assumption of homogeneity is reasonable for these cases, and the analytic techniques 



offer good estimates of the global properties of these surfaces. Unfortunately, 
corresponding data for periodic mesh surfaces is not available. However, we assume that this 
technique also offers reasonable estimates of the local/global relations for this class of 
surfaces. 

Mesh surfaces (g=2) 
Consider first a stack of mesh surfaces whose interiors are filled with surfactant chains. 
This structure consists of layers of chains, studded with pores, embedded in a continuous 
matrix of water and surfactant head-groups. In this case, the inner focal distance must be 
equal to the chain length, 1, so that: 

v 1 + 2 ~ 1 + ~ 1 ' =  0 and -= ~1~ 
l + H l t  (12) 

a 1  3 
If the outer focal distance is denoted by y: 

v 
l-2Hy+KyZ = 0 and = I - H y X  (13) 

av 3 
where vpol is the (outer) polar volume associated with a patch on the mesh interface of area 
a. These equations imply: 

v v H1  = 3(-1-2 and KlZ  = 3-6(-) (14) 
a 1  a1 

and the ratio between the focal distances: 

The link between the local surfactant parameter and the global composition is thus: 
v - 

We can see from this equation that such structures require the value of the surfactant 
parameter to lie between 1/2 and 2/3, in order for the interface to curve towards the chains 
(so that the mean curvature is by convention negative). 

For values of the surfactant parameter exceeding 2/3, the interface is curved towards the 
polar moiety, so that the interior of the mesh layers are occupied by water and surfactant 
head-groups. This "reverse" mesh structure contains a continuous chain matrix, interspersed 
with porous polar sheets. 

The structural changes which occur within the mesh phase as a function of the surfactant 
parameter can be related to the range of mean curvatures spanned by these mesh surfaces 
(illustrated by the surfaces shown in figure 1). At one extreme, where the surfactant 
parameter is just larger than 1/2, the Gaussian curvature (per unit cell) of the interface 
is close to zero, while the scaled mean curvature is close to 1/2. At this point the 

interface consists of deformed cylinders (similar to Delaunay surfaces 33) just meeting at 
their points of closest contact, and the tunnels defining the planar nets are vanishingly 
narrow. As the surfactant parameter increases towards 2/3, the mean curvature of the 
interface decreases, so that the preferred curvature towards the chains becomes less 
pronounced. When the surfactant parameter is identically equal to 2/3, the mean curvature 
vanishes, and mesh structures cannot form (since these cannot be minimal surfaces). For 
values of the surfactant parameter exceeding 2/3, the interface curves away from the chains 
and the curvature towards the polar volume increases continuously. As the magnitude of the 
surfactant parameter increases, the Gaussian curvature becomes increasingly negative, so 
that the genus (per unit volume) becomes larger. In other words, the density of pore 
"defects" within the layers increases. 

Strut surfaces (g=3) 
When the surfactant parameter is identically equal to 2/3, the formation of hyperbolic mesh 
interfaces is forbidden, since the mean curvature of the interface must vanish; i.e. the 
interface is curved equally towards both polar and hydrophobic regions. Consequently, at 
this value of the local molecular geometry, the interface must be a (non-planar) minimal 
surf ace. 
In fact, at the level of approximation adopted for this analysis, the local/global relation 
for strut interfaces separating polar and hydrophobic volumes (equation 16)) is identical to 



C7-2 18 COLLOQUE DE PHYSIQUE 

that derived above for mesh geometries, since both are approximated by homogeneous 
hyperbolic surfaces. 

So far, we have considered only surfactant monolayer interfaces, for which the interior and 
exterior volumes consist of polar and chain moieties. In general, (reversed or normal) 
bilayer interfaces lining the surfaces in the catalogue of Table I are less favourable than 
monolayers, since the surfactant parameters required for the formation of the outer 
monolayer differ from those in the inner monolayer, resulting in additional inhomogeneities 
not present for monolayers. The surfactant parameters for the inner and outer monolayers are 
equal to: 

In the case where the mean curvature vanishes(minima1 surfaces), the inner and outer 
geometries are (locally) identical, so that equal surfactant parameters can be adopted by 
the surfactant molecules in both monolayers. Thus, in addition to the possibility of 
monolayers lining minimal surfaces intermediate to normal and reversed mesh structures, we 
should consider surfactant bilayers (normal or reversed) lining triply periodic minimal 
surf aces. 

Such structures are topologically identical to those introduced by Luzzati to describe cubic 

phases 34. If a bilayer decorates a periodic minimal surface, the tunnels on both sides of 
the surface contain the polar moiety, while the minimal surface defines the centre of the 
bilayer; i.e. the free chain ends (figures 8 (a), (b)). This is similar to type I1 
structures proposed by Luzzati et al. Alternatively, if a reversed bilayer is centred on the 
periodic minimal surface, the water and head-groups form a curved layer bisected by the 
minimal surface, while the chains line the two interpenetrating tunnel networks defined by 
the minimal surface (Luzzati type I), illustrated schematically in figure 8(a),(b). 

Figure 8(a) (left): Schematic picture of the arrangement of chains for curved surfactant 
bilayers centred on a minimal surface. 

Figure 8(b) (right): Global view of. the structure illustrated in figure 8(a). The water 
and head-groups line the two inter-penetrating tunnel networks defined by the minimal 

surface. (Luzzati's type I1 , Tiddy's V2 phases for cubic surfaces 35) 

Consider first the case of bilayers lining minimal surfaces (figure 8(a)). The chain volume 
fraction is related to the volumes of polar and chain moieties per unit cell (Vpol and 
Vchain respectively): 

a= V c ~ i  -!A - 
V P I ~ ~ + V ~ ~ ~  a ' v  

(17) 

where A and V denote the head-group area per unit cell and the total cell volume. 

If the chains lie normal to the interface, we can use parallel surface theory to calculate 
the relation between the area on the interface (which is related to a half of the total head 
group area, since the aggregate consists of a bilayer) and the head group area. From 
equation (3) this relation is: 



S = 
A 

(18) 
2(1+K12) 

Using the Gauss-Bonnet theorem we can relate the surface to volume ratio to the curvature 
and the dimensionless surface to volume ratio, s/v2i3. written as G, this equation can be 
recast : 

3 
0 -- S 221~: - (-1 .- 

(2-2g) V K (19) 
Combining equations (17) - (19) gives: 

From equation (11) we have: 
I 

The surfactant parameter for the molecules in the saddle-shaped bilayer is related to the 
Gaussian curvature at the centre of the bilayer by the equation: 

K12 v 
(l?) 3(1- -) 

v V S -  -=--- * @=- 
al sl'a 1+m2 (22) (g -1) 

(assuming that the scaled Gaussian curvature is small, or, equivalently, the surfactant 
parameter is close to one). 

Inserting equations (21) and (22) into (20) yields the approximate relation between the 
local and global variables for bilayers lining periodic minimal Surfaces: 

Using equation (21) , we get : 
I v - -1 

These structures require the value of the surfactant parameter to exceed unity. 

The final structural class within the catalogue of homogeneous hyperbolic aggregates 
consists of reversed bilayers lining periodic minimal surfaces. In this case the surfactant 
chains line the interpenetrating tunnel networks which are carved out by the minimal surface 
and the polar moiety lines the minimal surface (figure 9(a), (b)). 

In this case, provided the surfactant chains lie normal to the interface, the head-groups 
lie on a parallel surface separated from the minimal surface by the half-thickness of the 
polar layer, tp. By analogy with equation (20): 

Since 

where a(0) is the area of minimal surface related by parallel transport to the head-group 
area, 
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NOW 

K=-- which implies that - 1 = - a1 
(tP+1l2 tp 2 v 

(27) 

3 a1 

Substituting equations (26) and (27) into (25) yields the relation between the surfactant 
parameter and the surfactant concentration. 

v 2 v  1 (--l)(-- - -) 
c+?z a1 3 a1 3 v 

2x(2g-2) -2.- 
3 a1 (28) 

(?-L) 
3 a 1  

The approximate relation for reversed bilayers on periodic minimal surfaces can be 
explicitly derived by substituting the surface to volume ratio estimate of equation (21). 

Figure 9(a) (left): A local view of the arrangement of the surfactant bilayer relative to 
the minimal surface interface for Luzzati type I or V1 structures 

Figure 9(b)  (right): Global view of a bicontinuous bilayer phase shown in figure 9 (a) 
The tunnel interiors are filled with surfactant chains, and the polar moiety lines the 
minimal surface. 

The catalogue of structural candidates within self-assembled systems encompasses (quasi- 
homogeneous) hyperbolic surfaces, as well as the better known elliptic and parabolic 
surfaces. The restriction of (quasi-)homogeneity has been necessary in order to compute the 
global characteristics of the interface from its intrinsic geometry. Geometrically, this 
restriction is a drastic one, and excludes many more exotic surfaces. 

Within our simple model of self-assembly, the bending energy is related to the actual 
surfactant parameter which must be adopted by molecules within the film, v/a l  and the 
preferred (relaxed) value of the surfactant parameter, ( ~ / a l ) ~  by: 



within the harmonic approximation. Expansion of this expression in terns of the actual and 

preferred mean and Gaussian curvatures gives 36, 
2 

F~~~~ = KI (H-HO? + K:! (K-KO) (30) 

Analysis of the functional form of the bending energy [Fogden, Hyde and Lundberg, to be 
published], as well as detailed numerical simulations for nonzero spontaneous curvatures 
[Ennis and Marcelja, to be published] confirm this form . Note that the expression does not 
contain a linear term in the Gaussian curvature (except when the values of the spontaneous 
curvatures vanish), and the Gaussian curvature first enters into the bending energy to 
quadratic order. 

Equation (30) demonstrates that the presence of inhomogeneities - be they mean and Gaussian 
curvature variations or chain length variations - give rise to a bending energy cost. (These 
inhomogeneities have been described as "frustrations" 37, 3 8 . )  Thus, in the absence of 
significant bulk energy contributions to the total free energy of a surfactant system, the 
homogeneous surfaces listed in Table I are expected to be of lower free energy than other, 
less homogeneous surfaces, and the assumption we have invoked in order to derive the global 
characteristics from the local geometry is precisely that required to minimise the 
interfacial energy. We are not concerned here with comparisons of surface free energies of 

the various possible interfacial geometries. (This question has been considered in ref 3 8 ) .  
Rather, given suitable bending moduli for the formation of these interfaces, what are the 
relative locations of the phases listed in Table I, and how do we account for the symmetries 
exhibited by surfactant mesophases? 

We have remarked earlier that the exterior volumes formed by spheres and cylinders are not 
completely homogeneous. Thus, in the case where the chains fill this volume, the chain 
lengths will vary. (Alternatively, the chain lengths can be uniform, and the interface must 
be facetted.) The preferred state of these aggregates is that which minimises these chain 
length variations. These lengths can be readily calculated by the construction of Voronoi 
(or Dirichlet) cells about each micelle, whose volumes define that region of space closer to 

the micelle than to any other micelle 39. The local/global estimates derived in the previous 
section are most accurate for Voronoi regions which most closely approximate spheres (for 
spherical reverse micelles) and cylinders (for cylindrical reverse micelles), for which the 
calculations are exact. In other words, the most homogeneous structures (which minimise the 
bending energy) are those with the largest number of faces in the Voronoi cells. Data for 
two and three dimensional arrays are given below. 

lattice number of faces in Voronoi cell 

2 -d hexagonal 6 
square 4 

3-d body-centred cubic 14 (ref.“O) 

random close packing 13.3 (ref 41) 

cubic close packinq (fcc) 12 (refa) 

On the basis of these data, cylindrical reverse micelles are expected to pack into (2-d) 
hexagonal lattices, and spherical reverse micelles assemble into most homogeneous arrays by 
forming body-centred cubic lattices. (It is interesting to note that the random sphere 
packing of Bernal is close to optimal homogeneity,) Alternatively, the chain lengths can be 
made absolutely uniform by deformation of the cylinders to give hexagonal prisms, and 
facetting of the spheres to form truncated octahedra. 

The bending energies for a range of global hyperbolic interfaces are more difficult to 
determine. According to the homogeneity criterion, mesh and strut interfaces are conjectured 
to be most favourable. It is relevant to note here that a strut minimal surface exhibiting 
5-fold rotational symmetry arises naturally in the context of regular triply-periodic 
minimal surfaces. Although the presence of the 5-fold axis means that the global immersion 
of this surface in three-dimensional euclidean space will densely fill space, a sufficiently 
small curvilinear coordinate domain is expected to yield an embedded surface element in 
space. Thus, a collection of such elements, smoothly joined, will form a globally embedded 
minimal surface with some characteristics of quasicrystalline lattices. Similarly, it is 
possible to imagine a mesh surface, whose pores lie on a Penrose lattice. Stacks of these 
surfaces can be arranged to give a g-lobal structure similar to the decagonal phase found in 
quasicrystalline systems. These strut and mesh surfaces may well be reasonably homogeneous 
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compared with translationally ordered (crystalline) interfaces. However, for now, we adopt 
the classical assumption that crystalline surfaces are most homogeneous. 

Assuming the validity of this claim, among translationally symmetric surfaces those of 
maximal symmetry are expected to be most homogeneous. Consequently, hexagonal and square 
mesh surfaces, which lead to three-dimensional rhombohedral and (body-centred ) tetragonal 
symmetries are the most favoured interfaces of genus two per unit cell. For (strut) surfaces 
of genus three (and higher) per unit cell, cubic symmetries result in the most homogeneous 
structures. 

These symmetry classes correspond to those found in many surfactant mesophases. Thus, 
assuming that translationally ordered surfaces have a more uniform distribution of 
curvatures than disordered surfaces, the formation of crystalline mesophases of 
rhombohedral, tetragonal and cubic symmetries can be explained as a result of minimisation 
of the surface (bending) energy alone. 

The analyses of the previous section can be collected into a universal plot of the local 
molecular shape as a function of the global interfacial geometry. In order of increasing 
surfactant parameter, we expect spherical micelles to form at the minimum possible 
surfactant parameter, 1/3. Between this value and 1/2, the spheres elongate to form 
ellipsoids,which eventually fuse, giving cylinders (or less homogeneous Delaunay surfaces). 
Between values of the surfactant parameter of 1/2 and 2/3, rhombohedral or tetragonal mesh 
surfaces can form, consisting of planar perforated sheets of surfactant chains embedded in a 
continuous water and head-group matrix. Since the outer volume contains the polar moiety, 
the mesh spacing is free to vary, without altering the chain geometry. Thus, the surfactant 
parameter is independent of the concentration within this regime. (Equation (16) is 
applicable to homogeneous exterior volumes. Since we assume that the sole role of the polar 
region is to fill a volume, this is not applicable here.) For values of the surfactant 
parameter exceeding 2/3, the reversed mesh geometry can form, in which case the polar layers 
are embedded in a continuous matrix of surfactant chains. In this case then, the composition 
uniquely determines the surfactant chain geometry, and there is a one-to-one relation 
between local and global variables (expressed by equation (16)). The regions of existence of 
these various monolayer structures are shown in figure along with the relations for bilayer 
structures. 

surfactant parameter, vlal 

Figure 10: Plot of the relation between the local and global phases for the surfaces descru 
in Table I. 



A few experimental studies of the cubic phase of surfactant or lipid systems have revealed 
the presence of more than one interfacial structure within the region, with a first order 

transition between the distinct phases 42,43, 44,45. So far, these observations have been 
confined to type I1 cubic phases (consisting of bilayers centred on IPMS, with water in the 
tunnels) for which the surfactant parameter is constrained to be larger than unity. Some 
feature of these observations can be understood in terms of the simple block model outlined 
in the previous sections. 

The local/global relation for cubic phases plotted in figure 10 assume perfect homogeneity 
of curvatures within periodic minimal surfaces. Within this approximation, the packing 

index,1/= , can be derived from equation (21), assuming constant mean and Gaussian 

curvatures over the interface, ?/G = m= 1.8800. 

In three dimensional euclidean space, some variation of Gaussian curvature must occur over 
the minimal surface. Thus the assumption of homogeneity is violated and the packing index 
differs from 1.8800. Calculated values of the packing index for some periodic minimal 
surfaces are given in Table 11. 

l '  I :  Packing indices (./=-)for a range of periodic minimal surfaces. 

IPMS genus space qroup packing index 

D-surf ace 3 Pn3m 1.8796 
I-WP surface 4 Im3m 1.8612 
gyroid 3 Ia3d 1.9213 
CLP surface (c/a=2) 3 C42/mc 1.9430 
P-surface 3 Im3m 1.7956 

Neovius surface 9 1m3m 1.6643 (ref19) 
F-RD surface 6 Fm3m 1.6487 

(re f32) 

We can use these actual values of the packing index to plot the local/global relations for 
each IPMS, using equation (23). The plots for this limited range of surfaces are shown in 
figure 11. 

Figure 11: Variation of local and global variables for various IPMS. 

The model suggests that (given a sufficiently slowly varying surfactant parameter with 
composition) the phases formed upon water dilution will be in order of decreasing packing 
index, in order to accommodate the increasing volume of water, without altering the local 
molecular shape significantly. 
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Estimates of the relative bending energy costs associated with these various IPMS can be 
made as follows. Since the ideal value of the packing index assumes perfect homogeneity, the 
difference between the actual and ideal values of the packing index reflects the degree of 
homogeneity of the IPMS. Using this comparison, the surfaces listed in Table I11 have been 
arranged in order of decreasing homogeneity,and increasing bending energy cost. A general 
trend of decreasing homogeneity with increasing genus per unit cell can be discerned, with 
the exception of the I-WP surface. It is interesting to note that the genus four I-WP 

surfacet(not considered by Sadoc and Charvolin 46) is expected to be more stable than the 
genus three P-surface . Although recent investigations of a pseudo-binary surfactant/water 
cubic phase45 suggest that the bilayer decorates the P-surface for a phase of Im3m symmetry 
(which is that of both the P- and I-WP surfaces), this result is less certain for other 
systems. For example, structural data for the cubic phase found in the binary SDS/water 

system l5 (probably the best-studied system to date) is difficult to reconcile with the P- 
surface 47. 

Since the packing index of the D-surface is closest to that of an ideal homogeneous minimal 
surface, the D-surface is expected to be the most stable (cubic) phase. As the rigidity of 
the bilayers decreases (so that they can tolerate increasingly large inhomogeneities), the 
progression: 

D-surface (Pn3m) -> I-WP surface tIm3m) 

or, for still lower rigidities: 

gyroid (Ia3d) ->D-surface (Pn3m) ->I-WP surface (Im3m) ->P-surface (Im3m) . 
While this simple model cannot hope to reproduce all the details of cubic phase formation, 
it is striking to compare the symmetries of cubic phases in surfactant/water and lipid/water 

systems with those listed above 48,49. The space groups Im3m, Pn3m and Ia3d abound, and 
transitions from Pn3m->Im3m and Ia3d->Pn3m have been observed in a number of systems. 

Complementary to these theoretical studies of possible aggregate microstructures are 
experimental investigations of these phases. The principal probe of microstructure has been 
small angle scattering of X-rays or neutrons. Since the interfaces are usually undergoing 
thermal fluctuations the assignation of microstructure is very difficult. Scattering data 
from crystalline mesophases usually result in about a dozen Bragg reflections at best, 
compared with many times more reflections from atomic crystals. Ironically, despite the 
introduction of intense synchrotron sources, the classical X-ray investigations into 
lipid/water mesophases by Luzzati's group almost thirty years ago remain the definitive 
studies. 

According to the approach espoused here, the microstructure can be characterised by the 
symmetry and topology per unit cell of the interface. (It is usually possible to decide 
whether the interface consists of monolayers or bilayers of surfactant on topological 

grounds 47.) The symmetry of the interface can be determined from the relative peak spacings 
(given a sufficient number of peaks), while the topology of the interface is directly 
related to the relative intensities of the peaks,which are more difficult to determine with 
accuracy. 

For crystalline hyperbolic interfaces, we can use parallel surface theory to estimate the 
interfacial topology from measurements of the swelling of the unit cell as a function of 

composition 45. This technique obviates the need to measure peak intensities and relies only 
on measurements of the peak positions as a function of the water content of the sample. The 
technique requires estimates of the head-group area per unit cell, A, (which can be 
calculated from the head-group area per surfactant molecule and the composition and the unit 
cell volume) and the chain length, 1. 

Using equation (18) together with the Gauss-Bonnet theorem, for bilayers lining an IPMS of 
genus g per unit cell: 

* or genus seven per conventional unit cell - 



The dimensionless surface to volume ratio is related to the lattice parameter of the cell 
(assumed to be cubic for simplicity) by: 

S G=--= A -  - A 

But the head-group area per unit cell is much larger than 4x(2-2g)12, so that we can make 
the approximation: 

A 4n(2-2g)12 6s- 
A ) (32) 

2a2 
This equation suggests a useful "master plot". If ~/2CX~is plotted against 2.x.12/a2 for a 
range of compositions, the plot should be linear, with slope equal to (2-2g), and intercept 
equal to the dimensionless surface to volume ratio, 6. These two structural characteristics 
serve to completely specify the interfacial geometry, since the surface to volume ratio is 
characteristic of both the symmetry and the topology. 

This technique has been used to decipher the microstructures within the cubic phase region 
of the (pseudo-binary) surfactant mixture consisting of the double chained cationic 
quaternary ammonium surfactant didodecyldimethylammonium bromide (DDAB)/cyclohexane/water. 
At the compositions required for formation of (room temperature) cubic phases, measurements 
indicate that all the alkane solvent is absorbed into the chain region, thereby swelling the 
hydrophobic volume and increasing the magnitude of the surfactant parameter to a value 

marginally larger than unity 45. The surfactant molecular dimensions have been estimated -. 

from those inferred from measurements of the neighbouring lamellar phase 5u. The resulting 
master plot for a range of samples within the cubic phase region is shown in figure 12(a). 
The linear plot reveals at a glance the presence of two distinct structures,. Magnifications 
of the two regions are shown in figures 12(b) and (c). The theoretical lines for IPMS whose 
symmetries are those measured are also shown. The data indicate the presence of bilayers 
lying on the D-surface, and, at higher water content, the P-surface. It is important to note 
that the linear character of the plots confirm the proposed structural class, viz. bilayers 
lying on IPMS. 

A similar relation between the lattice parameters and the composition can be deduced for the 
complementary structure, consisting of keversed bilayers lining IPMS: 

1 (33) 
2 a  

If the surfactant parameter is close to unity, the half-thickness of the polar layer, tp, 
can be related to the polar volume fraction: 

~t~~ 
3tp(l,) 

so that tp - 21 .@polar 
@polar = (34) 

2(tp+l) (3-2@po1ar) 

This yields the approximate master plot equation: 
2 

A 4z(2-2g) 412~poi, 
0 = - ( l  - ------ 

2 1 (35) 
2a2 A ( 3 - 2 ~ ~ ~ ~ )  

Similar relations can be derived for mesh structures, offering a useful technique to 
distinguish between these phases and lamellar phases (which should exhibit a linear swelling 
with concentration) . 
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Figure 12 (from top to bottom) : (a) Master plot, using equation (32)  for cubic phase data 
measured in the pseudo-binary DDAB/cyclohexane/water system. A, t and a refer to the head- 
group area per unit cell, the (oil swollen) chain length and the cubic lattice parameter. 
(b), (C) : Magnification of the two distinct region in figure 12 (a). 

The purpose of this paper has been to quantify the dual demands on any interfacial geometry 
imposed by local constraints - set by the preferred architecture of the surfactant molecules 
- and the global constra.int set by the composition of the mixture. Under the crude 
assumption of fixed molecular dimensions and rigid interfaces, the plots of figures 10 and 
11 are equivalent offer complete description of the phases formed as a function of these 
canonical variables. 

Of course, surfactant molecules are not blocks of rigid architecture, and the rigidity of 
these films is a complex function of a range of surface forces, the usual thermodynamic 
variables and electrostatic interactions. The enormous variety of surfactant and lipid 
species encompasses the complete span of behaviour; from rigid short-chained ionic 
surfactants, whose molecular shape is relatively insensitive to the solution conditions 
(such as DDAB), to floppy nonionic polyoxyethylene molecules,whose head-groups occupy an 

appreciable volume compared with the chains 51. Self -assembled structures of the former 
class conform best to the assumption inherent in the geometrical analysis described in this 
paper. The latter class are closer to block copolymers, where the preferred chain lengths 
and interfacial areas per molecule are set by chain entropy considerations. 



It is interesting to note that the phase behaviour of copolymers in solution is 
qualitatively similar to that of surfactants. The rich variety of hyperbolic interfaces is 
only now being recognised. Just as was the case in surfactant science until a few years ago, 
our familiarity with elliptic and hyperbolic interfaces led to the mistaken assignation of 
these hyperbolic phases in terms of the more classical structures. 

Recently, a bicontinuous cubic phase consisting of an interface which resembles the D- 
surface has been seen in block co~olvmer systems of both linear diblock and star diblock - 
architectures5', 53. Also, recent observations indicate the phase progression from lamellar - 
> mesh -> strut architecture in block copolymers in solution [Hyde, ~oizumi, Hasegawa and 
Hashimoto, in preparation]. Theoretical work suggests that these phases too can be 
understood from a combination of local and global constraints (whereas the locally preferred 
interfacial geometry is invariably elliptic for these systems). So, at both extremes of 
definition of the molecular shape, the aggregation behaviour exhibit common features. The 
presence of hyperbolic interfaces in these systems is a challenge to our powers of geometric 
intuition. The variety of forms found under the crude assumptions outlined here suggest the 
richness that will be found in nature. 
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