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GROWTH INSTABILITIES OF VESICLES 

R. BRUINSMA 

P h y s i c s  D e p a r t m e n t ,  U n i v e r s i t y  of C a l i f o r n i a ,  L o s  A n g e l e s  CA 90024, 
U.S.A. 

ABSTRACT 

We present  a model f o r  t h e  growth of short-wavelength i n s t a b i l i t i e s  of 

membranes with small curvature energy based on t h e  van d e r  Waals in te rac t ion  

energy. 

I. INTRODUCTION 

>S is well known,% t h e  macroscopic shape of l i p i d  membranes is la rge ly  

con t ro l led  by a combination of t h e  curvature energy K ,  spontaneous curvature,  

temperature, and t h e  in te rac t ion  between membranes. Heasured curvature 

energies  a r e  usual ly considerably i n  excess of 8-1 = kBT. The sur face  of t h e  

membrane is approximately . l a t  on length s c a l e s  l e s s  than the persistence 

length Ep - exp BK. I f  we do reduce BK, then Ep becomes smaller and smaller 

while t h e  membrane becomes rougher and rougher. For @K $ i, membranes a r e  

believed t o  be unstable due t o  thermal f luctuat ions.  The phase-transi t ion 

between t h e  L, and L3 phases may be an example of such an i n s t a b i l i t y . '  

Recently, E. Evans devised an Ingenious experiment which suggests an 

a l t e r n a t i v e  scenario f o r  the  evolut ion of i n s t a b i l i t i e s  of low X membranes. He 

dissolved t h e  sub-surface pro te in  scaffolding which had maintained t h e  r i g i d i t y  

of a ( s p h e r i c a l )  ves ic le3  and then watched t h e  evolution. The i n i t i a l  

curvature energy was q u i t e  low a s  t e s t i f i e d  by v i s i b l e  thermal f luc tua t ions  i n  

t h e  v e s i c l e  shape immediately following t h e  dissolut ion.  After  a while, t h e  

v e s i c l e  grew "buds" which l e d  t o  new smaller  vesicles .  The new v e s i c l e s  were 

s t a b l e .  

Host i n t e r e s t i n g l y ,  he observed on occasion during t h i s  process tubula r  

buds and these  tubes showed a bead-like i n s t a b i l i t y .  I n  o ther  words, t h e  

cross- s e c t i o n  of t h e  tube was modulated periodical ly.  I n s t a b i l i t i e s  of l i q u i d  

cy l inders  a r e  q u i t e  fami l ia r  s i n c e  Rayleighq but there  t h e  dr iving force  is the  

sur face  tension.  For v e s i c l e s ,  t h e  sur face  area is a f ixed  quant i ty  because of 

t h e  s u r f a c t a n t  a c t i o n  of t h e  l i p i d  molecules. Spontaneous curvature e f f e c t s  

can a l s o  be ru led  out.  

The i n s t a b i l i t y  would be understandable a s  t h e  consequence of a long- 

range a t t r a c t i v e  i n t e r a c t i o n  between the  walls  of the tube.¶ A long-range 
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a t t r a c t i v e  fo rce  would favor a large number of small  ves ic les  over a s i n g l e  

l a rge  v e s i c l e  (with t h e  same t o t a l  a rea)  s ince  more sec t ions  of t h e  membrane 

would be i n  c l o s e  proximity i n  the former case. In  t h a t  sense, an a t t r a c t i v e  

force has an e f f e c t  somewhat s imi la r  t o  surface tension.  The observed Rayleigh- 

type i n s t a b i l i t y  would then a l so  be understandable. This long-range a t t r a c t i o n  

must compete with t h e  curvature energy. I f  we transform a s i n g l e  spher ica l  

ves ic le  -- with no spontaneous curvature -- i n t o  N smaller  v e s i c l e s  then t h e  

curvature energy is increased by roughly (N-114n (~K+E) with t h e  Gaussian 

curvature energy. 

The dominant long-range a t t r a c t i o n  f o r  membranes is provided by t h e  van der  

Waals in te rac t ione .  The a t t r a c t i v e  van der  Waals energy between two f l a t  

p a r a l l e l  l a y e r s  of thickness  6 a dis tance z apar t  is well known t o  be of order 

W62/z4 with W t h e  Bamaker constant (-10-2' - 10'22 J . )  I f  we use f o r  6 t h e  

membrane th ickness  (- SOA) then t h i s  a t t r a c t i o n  is miniscule compared t o  t h e  

curvature energy a s  long a s  r ( z )  >> 6. This  would appear t o  be a f a t a l  

object ion t o  t h e  proposed explanation of t h e  observed i n s t a b i l i t y .  However, 

f o r  t h e  experiment discussed e a r l i e r  t h e r e  is no reason f o r  t h e  d i e l e c t r i c  

constants  of  t h e  so lven ts  i n  the  i n t e r i o r  and e x t e r i o r  of t h e  ves ic le  t o  be t h e  

same. Because of  t h e  dissolved protein scaffolding i n  t h e  i n t e r i o r  they could 

indeed be s i g n i f i c a n t l y  d i f f e r e n t .  The van der Waals i n t e r a c t i o n  per un i t  a rea  

between two p a r a l l e l  shee t s  enclosing a medium of d i e l e c t r i c  constant  E *  with a 

medium of d i e l e c t r i c  constant  cB on the outs ide is of order  W/zz. Here, W is 

proport ional  t o  (E, - eB)Z/(cA + eB)2. The a t t r a c t i o n  has increased by a 

f a c t o r  (z /6 )z  compared t o  t h e  d i r e c t  in te rac t ion  and can now be of t h e  same 

order of magnitude a s  t h e  curvature energy. In t h i s  a r t i c l e  we w i l l  

i nves t iga te  t h e  s t a b i l i t y  of a ves ic le  f o r  which t h e  van der Waals self-energy 

is comparable t o  t h e  Helfr ich curvature energy. 



11. CURVATURE AND VAN DER WAALS ENERGIES. 

The f r e e  energy of a closed ves ic le  with no spontaneous curvature is 

= 1 K {R~-' + %-l)t + - j 3  J d 3 r .  - 1 (1) 

e x t e r i o r  i n t e r i o r  

The f i r s t  term is t h e  standard Helfr ich curvature energy. We dropped t h e  

Gaussian curvature term a s  it is independent of t h e  v e s i c l e  shape and we a l s o  

assumed zero spontaneous curvature. The second term i n  Eq.1 is the  non- 

retarded van der Waals self-energy i n  t h e  de Boer-Hamaker approximation a s  

discussed i n  t h e  Appendix. We a r e  impl ic i t ly  assuming i n  Eq.1 t h a t  -- 
notvithstanding t h e  d i f f e r e n t  solvents  -- t h e r e  is no appreciable  osmotic 

pressure difference between i n t e r i o r  and e x t e r i o r  of t h e  ves ic le .  

We now should minimize F v i t h  respect  t o  t h e  v e s i c l e  shape f o r  a given 

f ixed  surface area. From dimensional considerat ions we should expect f o r  K >> 

W t o  f i n d  a spher ica l  shape s ince  then t h e  Helfr ich term dominates. 

For K < <  W, t h e  van der  Waals self-energy dominates. We saw i n  the 

introduct ion t h a t  two p a r a l l e l  f l a t  shee t s  a t t r a c t  each other .  If K << W we 

t h u s  should expect t h e  v e s i c l e  t o  be crumpled i n  some way. The general  

minimization of F with respect  t o  shape is c l e a r l y  a q u i t e  d i f f i c u l t  problem. 

We w i l l  consider only a s p e c i a l  case,  motivated by Evans' experiment, namely 

t h a t  of  a r o t a t i o n a l l y  invar ian t  vesicle .  

Assume a tubular  membrane with a pos i t ion  dependent rad ius  r ( z )  a t t ached  t o  

a micron-size v e s i c l e  of rad ius  R > >  r ( see  Fig.1)  which a c t s  a s  a rese rvo i r .  

The length of t h e  tube is L and the  2 a x i s  coincides with t h e  tube. The f r e e  

energy Eq.1 then s i m p l i f i e s  t o  
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with A g.6W. The derivat ion of the  van der  Waals term i n  Eq.2 is given i n  

the Appendix but it's form is obvious from dimensional considerat ions:  f o r  

r f z )  constant ,  F must be proportional t o  both L and W s o  F a WL/r. The second 

term i n  Eq.2 is an obvious general izat ion of t h i s .  

Equation 2 is only v a l i d  f o r  the,non-retarded van der Waals in te rac t ion .  

I f  r 2 X with X the  dominant adsorption wavelength of the  solvent  (- SOnm), 

then we must replace ~ r - l  by ~r - '  with B = XA ( t h e  retarded van der  Waals 

i n t e r a c t i o n ) .  

The q u a l i t a t i v e  fea tures  of F a r e  e a s i l y  understood. For a c i l i n d r i c a l  tube 

with r ( z )  = r O ,  Eq.2 gives F = L(Kn - A ) / r o .  For K > A/n, we can minimize F by 

reduclng L and increasing ro. For K < A/n, we minimize F by reducing ro and 

increasing L. We thus expect tha t  f o r  K > A/n t h e  v e s i c l e  is s t a b l e  while f o r  

K < A/n it w i l l  spontaneously develop tubular  protrusions.  For ro ?.,X, F = 

L(Xn-B/ro)/ro so  there  is then a c r i t i c a l  rad ius  R* = 8B/3nK such t h a t  f o r  ro L 
R* 2 X the  tube w i l l  swel l  and vanishes while f o r  X 5 ro 5 K* it w i l l  sh r ink  

and elongate ( t h e  reason f o r  the  numerical f a c t o r  w i l l  become c l e a r  l a t e r ) .  

The necessary condit ion X 2 R* f o r  t h i s  i n s t a b i l i t y  is just  K 5 A/n a s  before. 

We conclude t h a t  K* = A/n marks t h e  th reshold  of a growth I n s t a b i l i t y  which we 

w i l l  now proceed t o  inves t iga te  i n  more d e t a i l .  

I11 . DWAHICS 

The growth-rate of t h e  tube w i l l  be cont ro l led  by t h e  flow of solvent  

mater ial .  To s e e  why, assume we have a tube of length L and uniform rad ius  r. 

A s  it shr inks ,  its t o t a l  surface a rea  S a r ( t ) L ( t )  must remain (roughly) .fixed. 

This  means t h a t  t h e  tube v o l ~  V ( t )  a r Z ( t ) L ( t )  must decrease as V ( t )  a S r ( t ) .  

This i n  t u r n  implies  t h a t  there  must be flow from t h e  tube i n t o  t h e  ves ic le .  



As a r e s u l t ,  t h e  region where t h e  tube is connected t o  t h e  v e s i c l e  moves 

towards t h e  ves ic le  ( see  Fig. 1). We w i l l  focus on t h i s  contact  region and i n  

p a r t i c u l a r  look f o r  "steady-state" so lu t ions  with the  tube shape f ixed  but 

moving l e f t .  

There w i l l  be contr ibut ions t o  t h e  viscous energy-dissipation by t h e  

solvent  flow both from t h e  ves ic le  i n t e r i o r  and ex te r io r .  Viscous l o s s e s  from 

t h e  i n t e r i o r  w i l l  dominate because of t h e  ve loc i ty  g rad ien ts  imposed by t h e  

boundary conditions a t  t h e  ves ic le  surface.  As our boundary condit ion on t h e  

+ 
flow ve loc i ty  v, we w i l l  s e t  : i 0 a t  the  membrane. This is again because t h e  

membrane has a f i x e d  sur face  area.  If we wish t o  maintain, o r  even increase ,  

the  length of the  tube during t h e  flow, then the  membrane molecules cannot be 

c a r r i e d  along by the  flow towards t h e  ves ic le  s o  G must be zero a t  t h e  sur face  

of the  tube. We a l so  w i l l  assume t h a t  there  is no solvent  t ranspor t  ac ross  t h e  

membrane. 

-f + 
Let v ( p , z )  be t h e  solvent  flow ve loc i ty .  To compute v, we use t h e  

Po isseu i l l e  approximation: 

with P(z ,p )  t h e  pressure i n  t h e  tube and q t h e  v i scos i ty .  We assumed i n  Eq.3 

-3 
r ( z )  t o  be a slowly varying funct ion of z. A s  a consequence v is roughly 

a23  
p a r a l l e l  t o  t h e  tube axis ( " lubr ica t ion  approximation")e and ap2 >> - azz . The 

so lu t ion  of Eq.3 is then 

v ( p , z )  P - (r2 - p 2 )  
2q az 

F ina l ly ,  we demand mass conservation: 
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Using Eq.4 i n  Eq.5 gives 

X =  a t  [L] 8qr az L { ~ & }  

where we performed a s u i t a b l e  average of P(z ,p )  over p. 

The pressure i n  Eq.6 rece ives  con t r ibu t ions  from both curvature (PH) and 

van der Waals (Pmw) energies .  We s t a r t  with the  "Helfrich" pressure P,. On 

physical grounds we can i d e n t i f y  a t  l e a s t  two contr ibut ions t o  pH: 

i i )  For r ( z )  = r0 independent of z ,  t h e  curvature energy per u n i t  a rea  of  a 

tube is K/2roz. The chemical p o t e n t i a l  of sur fac tan t  molecules a t  t h e  tube 

sur face  is thus  l a r g e r  than a t  t h e  v e s i c l e  surface.  This chemical p o t e n t i a l  

d i f fe rence  would lead  t o  t ranspor t  of sur fac tan t  molecules from v e s i c l e  t o  

tube. Local equi l ibr ium requi res  a negative counter-pressure -- of o rder  K / r o 3  

-- t o  prevent swell ing of t h e  tube. 

(11) Recall t h a t  across  a curved sur face  of a f l u i d  with sur face  tens ion  U 

t h e r e  is a pressure drop - f l z h  with h t h e  height p r o f i l e  (Young-Laplace 

pressure ) .  This  pressure drop is t h e  v a r i a t i o n a l  der iva t ive  6F/6h of t h e  

i n t e r f a c i a l  energy. For membranes we would expect by analogy a pressure &F/6h 

I: KV4h which would cont r ibu te  a term Kd4r/dz4. 

l ~ F H  2nr The p o s i t i v e  s i g n  is We define t h e  Helfr ich pressure P, = BFH/BV = - - 
required because P, is t h e  counter-pressure required f o r  l o c a l  equi l ibr ium. Using 

Eq.2, 



which conta ins  t h e  expected terms. 

The van der  Waals pressure is highly inhomogeneous a s  discussed i n  t h e  

Appendix. For t h e  present purpose, ve note t h a t  t h e  van der Waals self-energy 

would i n  Eq.2 l ead  t o  col lapse of t h e  tube unless  there  is a pos i t ive  counter- 

pressure.  

Near t h e  membrane t h e  t r u e  pressure considerably exceeds PvDw ( see  

+ 
Appendix) but s ince  v is r e s t r i c t e d  t o  the  i n t e r i o r  of t h e  tube,  we w i l l  simply 

use Pm,. Since r ( z )  decreases as we e n t e r  t h e  tube,  PYDW increases with z .  

The r e s u l t i n g  pressure gradient  i n  Eq.6 is responsible f o r  t h e  f l o v  i n t o  tube.  

We s h a l l  look f o r  so lu t ions  of Eq.6 of t h e  form r ( z , t )  = r(z+Ut) ,  i . e .  

so lu t ions  f o r  which t h e  growing tube maintains a s t a t i o n a r y  shape while moving 

t o  t h e  l e f t .  Here, U is t h e  growth v e l o c i t y  which should be of t h e  order  of 1 

micronfsecond. I n  a frame moving v i t h  a ve loc i ty  U, where r only depends on X 

f z + U t ,  Eq.6 becomes 

This  equat ion has a f i r s t  i n t e g r a l  

We w i l l  assume t h a t  deep ins ide  t h e  v e s i c l e ,  t h e  pressure g rad ien ts  a r e  very 

small s o  t h e  in tegra t ion  constant  i n  Eq.10 is a l s o  very small (of order  nU/R2) 

We w i l l  s e t  it t o  zero. This means t h a t  i n  t h e  tube dP/dx is everywhere non- 

zero s o  dr/dx must be non-zero as well.  Tubes with uniform cross-section a re  
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thus  only possible  f o r  U = 0. We w i l l  only allow so lu t ions  with dr/dx < 0. 

For l a rge  r ,  we can neglect the  van der  Waals pressure i n  Eq.10 a s  well as 

t h e  l / r 2  contr ibut ion t o  pH. Equation 10 then reads: 

We w i l l  look f o r  so lu t ions  of increasing r as X becomes more negative. The 

Ansatz r ( x )  = C ( - X ) ~  is a so lu t ion  of Eq.11 i f  

For X - -R, r (R)  must be of order  R. Using Eq.12, t h i s  gives an expression 

f o r  t h e  growth veloci ty U: 

I U - K/qR2 I 
The unexpected aspect of Eq.13 is t h a t  t h e  nrowth ve loc i tv  does not d e ~ e n d  

on t h e  mannitude of t h e  van der  Waals a t t r a c t i o n  (which is providing t h e  

dr iv ing  force  f o r  t h e  growth). We w i l l  r e tu rn  t o  t h i s  point l a t e r .  For a 

t y p i c a l  v e s i c l e  with R - 10'~ cm, we f i n d  U - 10'~ c d s e c  i f  1-1 = 10-2 Poise 

(water)  and K a ksT. The order  of magnitude of U is thus  i n  a reasonable 

range. 

Deep ins ide  t h e  tube, r ( z )  var ies  l i t t l e .  The.dominant contr ibut ion t o  

t h e  Hel f r ich  pressure is t h e  l/$ term i n  Eq.7. Neglecting t h e  o ther  terms i n  

P, but including PYDW gives f o r  Eq.10: 



Only so lu t ions  with dr/dx < 0 a r e  allowed so  f o r  r ),X we must demand t h a t  

A K < $ ( i . e .  r !, R*) while f o r  r 2 l, we m u s t  demand K < z. 

The shape of the  tube f o r  r >, X is given by t h e  so lu t ion  of Eq.14b: 

with X, an in tegra t ion  constant .  To determine X,, ve match Eq.15 with Eq.iZ 

around r ( x )  - R*, i . e .  around X = - X, s ince  R* - W K .  The r e s u l t  is t h a t  

i /  
X ,  - - ( R 0 3 R 2 )  S ,  using Eq.13. 

For r (, X,  we must use Eq.14a: 

with X,' determined by matching Eqs.1S and 16 around r - X. 

The tube-shape described by Eqs.15 and 16 has a cross-sect ion of o rder  R* 

over a r a t h e r  l a rge  d i s tance .  Using Eq.iS, r Is of t h e  order  of R* f o r  X 5 

R2/R9 using Eq.13. Since R >> R*, the  tube length vould be q u l t e  l a r g e  compared 

t o  R. Actually, t h e  tube length is unl ike ly  t o  g e t  t h a t  l a rge .  The v e s i c l e  is 

not r e a l l y  a r e s e r v o i r  i n t o  vhtch we can pump j u s t  any amount of  so lven t .  

Became of its f i x e d  sur face  area a v e s i c l e  can swel l  by only a small  amount. 

Eventually t h e  v e s l c l e  w i l l  be per fec t ly  spher ica l  and f u r t h e r  f l o v  from t h e  

tube is prevented (bar r ing  mass t ranspor t  across  t h e  membrane). In  t h e  absence 

of flow, we saw t h a t  t h e r e  can be no f u r t h e r  increas. i n  L o r  decrease i n  r. 

The maximal extension of t h e  tube w i l l  depend on how "winkled" t h e  i n i t l a l  

surface is of t h e  v e s i c l e  because of thermal f luc tua t ions .  Another l i m i t a t i o n  
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on L is s e t  by t h e  Rayleigh i n s t a b i l i t y  which we w i l l  d iscuss  now. 

IV. RAYLEIGH INSTABILITY FOR tlE?lBRANES 

To inves t iga te  whether membranes can exhib i t  a Rayleigh i n s t a b i l i t y ,  we 

s t a r t  with a cy l indr ica l  ves ic le  of rad ius  R > X .  The i n t e r n a l  pressure i n  

t h e  tube is assumed t o  be adjusted t o  compensate f o r  curvature and van der Waals 

forces.  Now add a small per turbat ion i n  the  tube radius:  

Since t h e  sur face  area must be kept f ixed ,  t h e  average value R of r is 

unchanged. The induced pressure var ia t ion  is then ( see  Eqs. 7 & 8 ) :  

Inser t ing  Eq.17 i n  Eq.6 gives 

A periodic  modulation 6 ( z ,  t ) = eOkt cos kz is a s o l u t i o n  i f  

By maximizing % we f i n d  t h e  most rap id ly  growing mode. S e t t i n g  awk/ak* = 0 

gives  f o r  t h e  associated wavevector 



with R* = 8B/3n a s  before. The wavelength of the  i n s t a b i l i t y  is thus  of o rder  

R -- just  a s  f o r  t h e  "true" Rayleigh i n s t a b i l i t y .  Note t h a t  k*-1 diverges a s  R 

approaches R*. For R > R* there  is no I n s t a b i l i t y .  

The growth r a t e  of t h e  i n s t a b i l i t y  is o r  order B/R411. For R - .l micron, 

t h i s  is of order  102 sec-1 -- r e l a t i v e l y  rapid.  Of course, f o r  l a t e r  times we 

clnnot r e a l l y  use l i n e a r  s t a b i l i t y  ana lys i s  but by analogy with t h e  Rayleigh 

i n s t a b i l i t y  we expect eventual ly t o  f i n d  an a r ray  of spher ica l  v e s i c l e s  with a 

radius of order  R. 

V.  SLPMRY AND CONCLUSION 

We can summarize our main r e s u l t s  a s  follows: 

(1) Vesicles  a r e  unstable  against  t h e  growth of tubula r  p ro t rus ions  i f  

K !, A/n. 

(11) The c h a r a c t e r i s t i c  s i z e  of t h e  protrusions is R* = 8B/3nK while t h e  

growth ve loc i ty  is U - K/qR -- with R t h e  v e s i c l e  radius.  

(iii) A tube with a rad ius  ro R* has a Rayleigh-type i n s t a b i l i t y  with a 

wavelength of order  ro. 

Our r e s u l t  (ii) gives R* r .l micron and U r l micron/second both of which 

have the  r i g h t  order  of magnitude. The s t i f f n e s s  constant was not known i n  

Evans' experiment s o  ( i) cannot be checked but f o r  t y p i c a l  s t a b l e  membranes, K 

r 10-l9 J. which e a s i l y  obeys t h e  s t a b i l i t y  c r i t e r ium K >,A/n.  Concerning 

(iii), t h e  observed wave-length of t h e  Rayleigh-type i n s t a b i l i t y  was indeed of 

t h e  order  of t h e  tube radius.  These r e s u l t s  show t h a t  membranes which form a 

boundary between so lven ts  of d i f f e r e n t  d i e l e c t r i c  constants ,  have "short- 

wavelength" I n s t a b i l i t i e s  a t  low K not dr iven by thermal f l u c t u a t i o n s  but 

instead by competition between curvature energy and van der  Waals self-energy. 

Despite these  encouraging r e s u l t s ,  it is important t o  emphasize t h a t  we 
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made a  number of r a t h e r  s e r i o u s  approximations and s impl i f i ca t ions .  F i r s t  of 

a l l ,  we used t h e  Helfr ich curvature f r e e  energy (Eq.1). During our discussion, 

we ac tua l ly  were inves t iga t ing  t h e  short-distance behavior of membranes. In  

general ,  the re  v i l l  be f o r  small  rad ius  r cor rec t ion  terms t o  Eq.7 proportional 

t o  ~nr{l / rzp)  with p = 2,4 ,  . . . For small r ,  such terms w i l l  eventual ly exceed 

t h e  van der Jaa l s  a t t r a c t i o n ,  say a t , $  dis tance d. Obviously, i f  d  ),R8 our 

i n s t a b i l i t y  mechanism f a i l s .  These same non-linear terms could a l s o  s t a b i l i z e  

small-size ves ic les .  Estimating d seems r a t h e r  d i f f i c u l t  and we i m p l i c i t l y  

assumed d t o  be of a  molecular s i z e .  

We have made a  number of o ther  s impl i f i ca t ions :  

(1) We neglected e l e c t r o s t a t i c  fo rces  and hydration forces  which could 

overcome the  van der  Waals a t t r a c t i o n  a t  shor t  d i s tances ;  

( 2 )  We only constructed s teady-state  s o l u t i o n s  f o r  t h e  growing tube. We 

d id  not provide a  nucleat ion mechanism. The nucleat ion b a r r i e r  which must be 

overcome should not be la rge  compared t o  kbT. 

(3) We neglected thermal f luc tua t ions .  The f a c t  t h a t  W - K is an important 

threshold f o r  t h e  growth process suggests  s i m i l a r i t i e s  with the  unbinding 

t r a n s i t i o n  of l amel la r  membranes where W - iOK provides a  threshold.9 Thermal 

f luc tua t ions  play a  very important r o l e  i n  t h a t  case.  The e f f e c t  of thermal 

f luc tua t ions  i n  our case  would crudely be t o  make t h e  s t i f f n e s s  constant K 

dependent on t h e  tube rad ius  r and t o  provide a  repu ls ive  force f o r  small r. 

Using s tandard arguments, we expect K ( r )  Kg - kBT Ln(r/R) with KR t h e  

s t i f f n e s s  constant  of  t h e  v e s i c l e .  The s t i f f n e s s  constant  thus  increases a s  

t h e  tube s i z e  decreases. The s t i f f n e s s  constant  KR o f  a  v e s i c l e  with R < Cp is 

expected t o  be of o rder  Kg S K, - kBT t n  (Wao)  with aO a microscopic length 

and K, t h e  "bare" curvature energy. Assume now K, ),A/n. Vesicles  with KR < A 

can grow tubes with r t z )  > d where 



The tube rad ius  can however not shr ink  t o  zero s ince  f o r  r < d. K ( r )  w i l l  

A exceed even i f  KR does not .  Large thermal f luc tua t ion  could, a s  mentioned, 

lead t o  competing b - w a v e l e n p t h  i n s t a b i 1 i t i e s . i  On the  b a s i s  of Evans' 

observations we concentrated on short-distance i n s t a b i l i t i e s  and ignored t h i s  

p o s s i b i l i t y .  

Our discussion of membrane s t a b i l i t y  was pat terned on t h e  theory of 

precursor spreadlng.8 Precursors a r e  t h i n  f i lms spreading out of drops of f l u i d  

on a s u b s t r a t e  which is wetted by t h e  f l u i d .  A s  i n  t h e  present  case,  t h e  van 

der  Waals fo rce  is bel ieved t o  l i e  a t  t h e  o r i g i n  of t h e  precursor  i n s t a b i l i t y .  

Our pecul iar  r e s u l t  t h a t  t h e  growth ve loc i ty  U is independent of the  Hamaker 

constant was a l s o  found t o  be t r u e  f o r  precursor spreading. The reader  is 

r e f e r r e d  t o  Ref.8 f o r  a f u r t h e r  discussion of t h i s  s t range  f a c t .  An important 

d i f fe rence  wlth precursor spreading is t h a t  i n  t h a t  case t h e  van der Waals 

fo rce  thickens t h e  f i l m  whlle i n  our case it led t o  a thinning of the tube. 

The most e a s i l y  experimentally accessible  predict ions concern t h e  growth 

ve loc i ty  U (Eq.13) and t h e  wavevector kg of the  membrane analog of t h e  Rayleigh 

i n s t a b i l i t y .  In  p a r t i c u l a r ,  it would be very i n t e r e s t i n g  i f  Ae = €*-EB could 

be varied s i n c e  t h e  growth ve loc i ty  U is predicted t o  be independent of t h e  

Hamaker constant  which is proport ional  t o  A E ~ .  h t h e  o ther  hand, by tuning AG 

one could ad jus t  t h e  s t a b i l i t y  condit ion A >< K. One could even specu la te  

whether t h e  budding instability occurs  i n  biological  v e s i c l e s  with A6 a s  t h e  

con t ro l  parameter. 
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FIGURE CAPTIONS 

F i g . l  Tubular i n s t a b i l i t y  appearing on the surface o f  spherical v e s i c l e  

of radius R .  The bud is rotational ly  invariant around the z axes. 
+ 

The tube grows by a flow v ( p , z )  from the tube into the v e s i c l e .  
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APPENDIX A: Van der  Waals Interact ion 

Assume we have a  closed ves ic le  of a r b i t r a r y  shape. Let "A" denote 

i n t e r i o r  solvent  molecules and "B" e x t e r i o r  sovent molecules. The non- 

retarded van der Wals energy of t h e  ves ic le  i n  the  de Boer-Hamaker 

approximation is: 

with W,, WAB and WBB the appropriate  energy s c a l e s  f o r  respec t ive ly  AA, BB 

and AB in te rac t ion .  A l l  i n t e g r a l s  must be evaluated with a  cut-off 

+ -4 
Ir, - rZ1 > d where d is a molecular length. Define 

and rewr i te  Eq. A I  as 

with VA t h e  t o t a l  volume of A solvent  and VB t h a t  of  B so lven t .  We thus  can 

i n t e r p r e t  - F C(d) and - F C(d) a s  con t r ibu t ions  t o  t h e  chemical 



poten t ia l s  of t h e  solvent  molecules ins ide  and outside t h e  ves ic le .  By 

assumption t h e r e  is no osmotic pressure drop accross the  membrane so  we can 

drop them. 

For two p l a t e s  separated by a dis tance L ,  Eq.A3 is easy t o  evalute:  

with S t h e  surface area.  This must reduce t o  the  well known r e s u l t 6  

with W t h e  Hamaker constant .  We thus iden t i fy  

Approximately, WM a c A Z ,  WBB a and WAB a EAEB while W a ( E A  - eB)2. 
Next we go t o  a tube of cross-section r ,  length L. Then 

with 

the energy densi ty.  T h i s  i n t e g r a l  is a hypergeometric func t ion ,  so  is d i f -  

f i c u l t  t o  ob ta in  FvDw i n  closed form. Numerical evaluat ion cannot be used 

because t h e  i n t e g r a l  i n  Eq.A7 is s t rongly  divergent a t  p=r. To circumvent 
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t h i s  problem, we expand f i r s t  f ( p )  i n  powers of p: 

The s e r i e s  contains  only even powers. Next, f o r  p c l o s e  t o  r it is easy 

t o  show t h a t  f ( p )  reduces t o  the  s tandard expression of  ~ e r j a ~ u i n : ~  

Equation AI0 is not of t h e  ana ly t ic  form indicated by t h e  power s e r i e s  

Eq.A9 a s  it contains  odd powers of p / r .  It is simple t o  rewr i te  Eq.AI0 

t o  avoid t h i s  problem: 

A l l  

with C an undetermined constant .  We choose C by demarrding t h a t  f ( 0 )  = 

w/8r3 ( see  Eq.A9) s o  C =(3n/16 - l). Now, f ( p )  has t h e  l imi t ing  form of  

Eq.AI0 without v io la t ing  t h e  form imposed by Eq.A9. I f  we expand Eq.AII 

i n  powers of p/r  then we f i n d  t h a t  c o e f f i c i e n t  2/71 of  t h e  ( p / r ) =  term is 

c lose  t o  the  c o r r e c t  value 15/32. The coef f ic ien t  of t h e  zero order  term 

is t h e  cor rec t  1/8 by construct ion.  We conclude t h a t  Eq.AI1 is a 

reasonable approximation t o  f ( p )  f o r  a l l  p i n  the range 0 t o  r. 

Performing t h e  i n t e g r a l  i n  Eq.A7 gives: 

with C'  a constant .  



The f i r s t  term i n  Eq.AI2 is proport ional  t o  t h e  sur face  area Lr. It 

is thus a contribution t o  t h e  surface energy. The t o t a l  sur face  tension 

1s assumed zero s o  we can drop the term. The remaining term is t h e  second 

term of Eq.2 vhere we assumed r(z) t o  be slowly varying with z on a s c a l e  

of order  r. 

The reason why t h e  van der  Waals pressure is inhomogeneous follows 

from the  condit ion of hydrostat ic  equilibrium 

with f our f r e e  energy density. It follows from Eq.AI1 t h a t  P is very l a r g e  

near p = r. 


