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COLLOQUE DE PHYSIQUE
Colloque C7, supplément au n°23, Tome 51, ler décembre 1990

GROWTH INSTABILITIES OF VESICLES

R. BRUINSMA

Physics Department, University of California, Los Angeles CA 90024,
U.S.A.

ABSTRACT

We present a model for the growth of short-wavelength instabilities of

membranes with small curvature energy based on the van der Waals interaction

energy.
I. INTRODUCTION

As is well known,! the macroscopic shape of lipid membranes is largely
controlled by a combination of the curvature enérgy K, spontaneous curvature,
temperature, and the interaction between membranes. Measured curvature
energies are usually considerably in excess of B™1 = kyT. The surface of the
membrane is approximately :lat on length scales less than the persistence
length EP ~ exp BK. If we do reduce BK, then Ep becomes smaller and smaller
while the membrane becomes rougher and rougher. For BK < 1, membranes are
believed to be unstable due to thermal fluctuations. The phase~transition
between the Ly and L, phases may be an example of such an instability.?!

Recently,2 E. Evans devised an ingenious experiment which suggests an
alternative scenario for the evolution of instabilities of low X membranes. He
dissolved the sub-surface protein scaffolding which had maintained the rigidity
of a (spherical) vesicle® and then watched the evolution. The initial
curvature energy was quite low as testified by visible thermal fluctuations in
the vesicle shape immediately following the dissolution. After a while, the
vesicle grew "buds” which led to new smaller vesicles. The new vesicles were
stable.

Most interestingly, he observed on occasion during this process tubular
buds and these tubes showed a bead-like instability. In other words, the
cross- section of the tube was modulated periodically. Instabilities of liquid
cylinders are quite familiar since Rayleigh% but there the driving force is the
surface tension. For vesicles, the surface area is a fixed quantity because of
the surfactant action of the lipid molecules. Spontaneous curvature effects
can also be ruled out.

The instability would be understandable as the consequence of a long-—

range attractive interaction between the walls of the tube.5 A long-range
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attractive force would favor a large number of small vesicles over a single
large vesicle (with the same total area) since more sections of the membrane
would be in close proximity in the former case.  In that sense, an attractive
force has an effect somewhat similar to surface tension. The observed Rayleigh-
type instability would then also be understandable. This long-range attraction
must compete with the curvature energy. If we transform a single spherical
vesicle -- with no spontaneous curvature —- into N smaller vesicles then the
curvature energy is increased by roughly (N-1)4n (2ZK+K) with X the Gaussian
curvature energy.

The dominant long-range attraction for membranes is provided by the van der
Waals interaction®. The attractive van der Waals energy between two flat
parallel layers of thickness & a distance z apart is well known to be of order
W82/24 with W the Hamaker constant (~10721 - 10722 J.) If we use for & the
membrane thickness (~ SOA) then this attraction is miniscule compared to the
curvature energy as long as r(z) >> &. This would appear to be a fatal
objection to the proposed explanation of the observed instability. However,
for the experiment discussed earlier there is no reason for the dielectric
constants of the solvents in the interior and exterior of the vesicle to be the
same. Because of the dissolved protein scaffolding in the interior they could
indeed be significantly different. The van der Waals interaction per unit area
between two parallel sheets enclosing a medium of dielectric constant €, with a
medium of dielectric constant €y on the outside is of order W/zZ. Here, W is
proportional to (€, — €gl)2/(€, + €5)2. The attraction has increased by a
factor (z/8)2 compared to the direct interaction and can now be of the same
order of magnitude as the curvature energy. In this article we will
investigate the stability of a vesicle for which the van der Waals self-energy

is comparable to the Helfrich curvature energy.
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IT. CURVATURE AND VAN DER WAALS ENERGIES.

The free energy of a closed vesicle with no spontaneous curvature is

= L -1 -1\%2 | W
Ir‘-szdzer{R1 +R2}+2"2Jd3r d3r’

exterior interior

[EEIITEE

The first term is the standard Helfrich curvature energy. We dropped the
Gaussian curvature term as it is independent of the vesicle shape and we also
assumed zero spontaneous curvature. The second term in Eq.1i is the non-
retarded van der Waals self-energy in the de Boer—-Hamaker approximation as
discussed in the Appendix. We are implicitly sassuming in Eq.1 that ~-
notwithstanding the different solvents —— there is no appreciable osmotic
pressure difference between interior and exterior of the vesicle.

We now should minimize F with respect to the vesicle shape for a given
fixed surface area. From dimensional considerations we should expect for K >>
W to.find a spherical shape since then the Helfrich term dominates.

For K << W, the van der Waals self-energy dominates. We saw in the
introduction that two parallel flat sheets attract each other. If K << W we
thus should expect the vesicle to be crﬁmpled in some way. The general
minimization of F with respect to shape is clearly a quite difficult problem.
We will consider only a special case, motivated by Evans' experiment, namely
that of a rotationally invariant vesicle.

Assume a tubular membrane with a position dependent radius r(z) attached to
a micron—size vesicle of radius R >> r (see Fig.1) which acts as a reservoir.
The length of the tube is L and the Z axis coincides with the tube. The free

energy Eq.1 then simplifies to

- d2r _ 1 \2 _, -1
F = JLdz {Kﬂr(z) {dzz g, Ar (z)} (2)
0
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vith A #.6W. The derivation of the van der Waals term in Eq.2 is given in

the Appendix but it's form is obvious from dimensional considerations: for
r{z) constant, F must be proportional to both L and W so F @ WL/r. The second
term in Eq.2 is an obvious generalization of this.

Equation 2 is only valid for the non-retarded van der Waals interaction.

If r > % with X the dominant adsorption wavelength of the solvent (~ S0nm),
then we must replace ar-t by Br~? with B = XA (the retarded van der Waals
interaction).

The qualitative features of F are easily understood. For a cilindrical tube
with r(2) = ry,, Eq.2 gives F = L(Kn = A)/r,. For K > A/n, we can minimize F by
reducing L and increasing r,. For K < A/n, we minimize F by reducing ro, and
increasing L. We thus expect that for K > A/7n the vesicle ig stable while for
K ¢ A/n it will spontaneously develop tubular protrusions. For ry, %\, F =
L{Kn-B/ry)/r, so there is then a critical radius R* = 8B/3nK such that for r, >
R® > X the tube will swell and vanishes while for X\ < ry ¢ R* it will shrink
and elongate (the reason for the numerical factor g will become clear later).
The necessary condition \ { R* for this instability is just K < A/n as before.
We conclude that X* = A/m marks the threshold of a growth instability which we

will now proceed to investigate in more detail.

11 . DYNAMICS

The growthrrate of the tube will be controlled by the flow of solvent
material. To see why, assume we have a tube of length L and uniform radius r.
As it shrinks, its total surface area S & r(t)L(t) must remain (roughly) fixed.
This means that the tube volume V(t) & r2(t)L(t) must decrease as V(t) « Sr(t).

This in turn implies that there must be flow from the tube into the vesicle.



C7-57

As a result, the region where the tube is connected to the vesicle moves
towards the vesicle (see Fig. 1). We will focus on this contact region and in
particular look for "steady—state” solutions with the tube shape fixed but
moving left.

There will be contributions to the viscous energy-dissipation by the
solvent flow both from the vesicle interior and exterjor. Viscous losses from
the interior will dominate because of the velocity gradients imposed by the
boundary conditions at the vesicle surface. As our boundary condition on the
flow velocity 3, we will set vEo at the membrane. This is again because the
membrane has a fixed surface area. If we wish to maintain, or even increase,
the length of the tube during the flow, then the membrane molecules cannot be
carried along by the flow towards the vesicle so v must be zero at the surface
of the tube. We also will assume that there is no solvent transport across the
membrane.

Let 3(p,z) be the solvent flow velocity. To compute 3, we use the

Poisseuille approximation:

(3

with P(z,p) the pressure in the tube and n the viscosity. We assumed in Eq.3

r(z) to be a slowly varying function of 2. As a consequence 3 is roughly

~ 2 2
parallel to the tube axis z ("lubrication approximation")8 and g;% > g;g . The
solution of Eq.3 is then

1 9P
@ L = = 2 - p2
vi{p,z) 2n 3z (r p2) (4)

Finally, we demand mass conservation:
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N 5 r(z)

L 2 =28 =

3t (mr2) + 32 I 2np vip,z)dp 0 (5)
o

Using Eq.4 in Eq.S gives

ar _ (L) 2] &
at [Bnr] az{r dz} ®

where we performed a suitable average of P(z,p) over p.

The pressure in EqQ.6 receives contributions from both curvature (Py) and
van der Waals (Pypy) energies. We start with the "Helfrich" pressure Py. On
physical grounds we can identify at least two contributions to Py:

(1) For r{(z) = r, independent of z, the curvature energy per unit area of a
tube is K/2r°2. The chemical potential of surfactant molecules at the tube
surface is thus larger than at the vesicle surface. This chemical potential
difference would lead to tramsport of surfactant molecules from vesicle to
tube. Local equilibrium requires a negative counter—pressure =- of order K/r 3
~= to prevent swelling of the tube.

(i1) Recall that across a curved surface of a fluid with surface tension o
there is a pressure drop - oV2h with h the height profile (Young-Laplace
pressure). This pressure drop is the variational derivative &8F/éh of the
interfacial energy. For membranes we would expect by analogy a pressure 8F/éh
2 KV4h which would contribute a term Kd4r/dz4. '

1 &Fy

We define the Helfrich pressure Py = 3Fy/aV = Znr or - The positive sign is

required because Py is the counter-pressure required for local equilibrium. Using

Eq.2,
= dir L 2dr d8r 38 (d2rZ _ 1
Pu = K{dzﬂ*rdzdzs*m— (&z2) -z o



which contains the expected terms.

The van der Waals pressure is highly inhomogeneous as discussed in the
Appendix. For .the present purpose, we note that the van der Waals self-energy
would in Eq.2 lead to collapse of the tube unless there is a positive counter-

pressure.

-
A
>

A/2nr8
Pypw = (8)

B/mr4

-
v
>

Near the membrane the true pressure considerably exceeds Pypy (see
Appendix) but since 3 is restricted to the interior of the tube, we will simply
use Pypy. Since r(z) decreases as we enter the tube, Pypy increases with z.

The resulting pressure gradient in Eq.6 is responsible for the flow into tube.
We shall look for solutions of Eq.6 of the form r(z,t) = r(z+Ut), i.e.
solutions for which the growing tube maintains a stationary shape while moving
to the left. Here, U is the growth velocity which should be of the order of 1
micron/second. In a frame moving with a velocity U, where r only depends on x

= z + Ut, Eq.6 becomes

de 1 4 4‘1_?]
R = 9

This equation has a first integral

dP _ anu _

o const. 10)
We will assume that deep inside the vesicle, the pressure gradients are very
small so the integration constant in EQ.10 is also very small (of order nU/R2).

We will set it to zero. This means that in the tube dP/dx is everywhere non-

zero so dr/dx must be non-zero as well. Tubes with uniform cross—section are

C7-59
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thus only possible for U = 0. We will only allow solutions with dr/dx < 0.
For large r, we can neglect the van der Waals pressure in Eq.10 as well as

the 1/r2 contribution to Py. Equation 10 then reads:

4, 2e @, 3 @2 _ aw
de{dx4+rdxdx3+2r(d.x2]}' rz (11

We will look for solutions of increasing r as x becomes more negative. The

Ansatz r(x) = c(-x)%® is a solution of Eq.11 if
rix) = [1§£Q]95 (—x]ﬁg 12)

For x ~ -R, r(R) must be of order R. Using Eq.12, this gives an expression
for the growth velocity U:

U ~ K/nR2 (13)

The unexpected aspect of Eq.13 is that the growth velocity does not depend

on _the magnitude of the van der Waals attraction (which is providing the

driving force for the growth). We will return to this point later. For a
typical vesicle with R ~ 10~ cm, we find U ~ 10~? co/sec if n =‘10‘2 Poise
(water) and K ~ kgT. The order of magnitude of U is thus in a ressonable
range.

Deep inside the tube, r(z) varies little. The dominant contribution to
the Helfrich pressure is the 1/r2 term in Eq.7. Neglecting the other terms in

Py but including Pypy gives for Eq.10:

dr _ % —n___ 2 (r $3) (14a)
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dr 4nu 2 (r %2)

= ——r

ax [31( 2 E] (14b)
2 nr

Only solutions with dr/dx < 0 are allowed so for r 2 \ we must demand that

K < gﬁ% (i.e. r L R*) while for r £ \, we must demand K < %.

The shape of the tube for r 7, A is given by the solution of Eq.14b:

rix) =

alg

-1
[ oo (B e 2B qulx 4 xo)]vz ] (R* % r 2 x) us

with x, an integration constant. To determine X,, W& match Eq.1S with Eq.12
sround r(x) ~ R*, i.e. around x = ~ X, since R* ~ B/K. The result is that

Ys

Xo ~ =(R*3R2) using EqQ.13.

For r { )\, we must use Eq.14a:

3(A -x
rix) % (" ) { +1 '} (r <) (16)
X + Xq

with x,' determined by matching Eqs.15 and 16 around r ~ ).

The tube-shape described by Eqs.15 and 16 has a cross-section of order R*
over a rather large distance. Using Eq.15, r is of the order of R* for x <
R2/R* using Eq.13. Since R >> R*, the tube length would be quite large compared
to R. Actually, the tube length is unlikely to get that large. The vesicle is
not really a reservoir into which we éan pump just any amount of solvent.
Because of its fixed surface area a vesicle can swell by only a small amount.
Eventually the vesicle will be perfectly spherical and further flow from the
tube is prevented (barring mass transport across the membrane). In the absence
of flow, we saw that there can be no further increas2 in L or decrease in r.
The maximal extension of the tube will depend on how "wrinkled" the initial

surface is of the vesicle because of thermal fluctuations. Another limitation
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on L is set by the Rayleigh instability which we will discuss now.

IV. RAYLEIGH INSTABILITY FOR MEMBRANES

To investigate whether membranes can exhibit a Rayleigh ipstability, we
start with a cylindrical vesicle of radius R > M. The internal pressure in
the tube is assumed to be adjusted to compensate for curvature and van der Waals

forces. Now add a small perturbation in the tube radius:

r(z,t) = R + €(z,t) 17)

Since the surface area must be kept fixed, the average value R of r is

unchanged. The induced pressure variation is then (see Eqs. 7 & 8):

= die | 4B _ 3K
P(e) = K dz4 [ RS ~ 2R4 ] € (18)
Inserting Eq.17 in Eq.6 gives

%¢ _ RZ dée [ﬂ_ﬁ&}ﬁe_

at sn{Ksz* 2R3 ~ 7RS) dz2 a»

A periodic modulation €(z,t) = ewkt cos kz is a solution if

R3 4B 3K
o = gy kz{;ﬁg - 24 - Kk4} 20

By maximizing w, we find the most rapidly growing mode. Setting 3uwk/3k* = 0

gives for the associated wavevector

ke = Ao 1)]’/“ 2
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with R* = 8B/3m as before. The wavelength of the instability is thus of order
R -- just as for the "true" Rayleigh instability. Note that k*~% diverges as R
approaches R*. For R > R* there is no instability.

The growth rate of the instability is or order B/R%n. For R ~ .1 micron,
this is of order 102 sec™t =- relatively rapid. Of course, for later times we
cinnot really use linear stability analysis but by analogy with the Rayleigh
instability we expect eventually to find an array of spherical vesicles with a

radius of order R.

V. SUMMARY AND CONCLUSION

We can summarize our main results as follows:
(1) Vesicles are unstable against the growth of tubular protrusions if
K < A/n.
(i1) The characteristic size of the protrusions is R* = 8B/3nK while the
growth velocity is U ~ K/nR -- with R the vesicle radius.
(i1i) A tube with a radius r, { R* has a Rayleigh-type instability with a
wavelength of order r,.
Our result (ii) gives R* # .1 micron and U # 1 micron/second both of which
have the right order of magnitude. The stiffness constant was not Known in
Evans' experimeqt so (i) cannot be checked but for typical stable membranes, K

= 10~1°

J. which easily obeys the stability criterium X > A/n. Concerning
(1ii), the observed wave-length of the Rayleigh-type instability was indeed of
the order of the tube radius. These results show that membranes vhich form a
boundary between solvents of different dielectric constants, have "short-
wavelength” instabilities at low K not driven by thermal fluctuations but

instead by competition between curvature energy and van der Waals self-energy.

Despite these encouraging results, it is important to emphasize that we
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made a number of rather serious approximations and simplifications. First of
all, we used the Helfrich curvature free energy (Eq.1). During our discussion,

ve actually were investigating the sghort—distance behavior of membranes. In

general, there will be for small radius r correction terms to Eq.7 proportional
to 2nr<1/r2P> with p = 2,4, ... For small r, such terms will eventually exceed
the van der Waals attraction, say at a distance d. Obviously, if d 2 R* our
instability mechanism fails. These same non-linear terms could also stabilize
small-size vesicles. Estimating d seems rather difficult and we implicitly
assumed d to be of a molecular size.

We have made a number of other simplifications:
(1) We neglected electrostatic forces and hydration forces which could
overcome the van der Waals attraction at short distances;
(2) We only constructed steady-state solutions for the growing tube. We
did not provide a nucleation mechanism. The nucleation barrier which must be
overcome should not be large compared to kyT.
(3) We neglected thermal fluctuations. The fact that W ~ K is an important
threshold for the growth process suggests similarities with the unbinding
transition of lamellar membranes where W ~ 10K provides a threshold.? Thermal
fluctuations play a very important rcle in that case. The effect of thermal
fluctuations in our case would crudely be to make the stiffness constant K
dependent on the tube radiug r and to provide a répulsive force for small r.
Using standard arguments, we expect K(r) = Kp - kgT tn(r/R) with Kz the
stiffness constant of the vesicle. The stiffness constant thus increases as
the tube size decreases. The stiffness constant Ky of a vesicle with R < &p is
expected to be of order Ky = K, = kgT tn (R/a,) with a, a microscopic length
and K, the "hare" curvature energy. Assume now K, > A/m. Vesicles with Kz < A

can grow tubes with r(z) > d where
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d~ a, exp[[ K, - %}/kg'l‘]

The tube radius can however not shrink to zero since for r < d, K(r) will
exceed % even if Ky does not. Large thermal fluctuation could, as mentioned,
lead to competing long-wavelength instabilities.l On the basis of Evans'
observations we concentrated on short-distance instabilities and ignored this
possibility.

Our discussion of membrane stability was patterned on the theory of
precursor spreading.® Precursors are thin films spreading out of drops of fluid
on a substrate which is wetted by the fluid. As in the present case, the van
der Waals force is believed to lie at the origin of the precursor instability.
Our peculiar result that the growth velocity U is independent of the Hamaker
constant was also found to be true for precursor spreading. The reader is
referred to Ref.8 for a further discussion of this strange fact. An important
difference with precursor spreading is that in that case the van der Waals
force thickens the film while in our case it led to a thinning of the tube.

The most'easily experimentally accessible predictions concern the growth
velocity U (Eq.13) and the wavevector k* of the membrane analog of the Rayleigh
instability. In particular, it would be very interesting if A¢ = e€,-€g could
be varied since>the growth velocity U is predicted to be independent of the
Hamaker constant which is proportional to A€eZ. On the other hand, by tuning Ae
one could adjust the stability condition A % K. One could even speculate
whether the budding instability occurs in biological vesicles with Ae as the

control parameter.
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FIGURE CAPTIONS

Fig.1 Tubular instability appearing on the surface of spherical vesicle
of radius R. The bud is rotationally invariant around the z axes.

The tube grows by a flow 3(p,z) from the tube into the vesicle.
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APPENDIX A: Van der Waals Interaction

Assume we have a closed vesicle of arbitrary shape. Let "A" denote
interior solvent molecules and "B" exterior sovent molecules. The non-
retarded van der Wals energy of the vesicle in the de Boer-Hamaker

approximation is:

Vaa
Foaw = - 3 f d3r, f Br, =55 Al
A A ll"i‘l"z‘
W,
- —%5 a3r, f d3r2 3 1+
B B lri—r2|5

- W f d3r f d3r
AB A t B 2 I?l_FZ‘G
with W,,, W,g and Wgp the appropriate energy scales for respectively AA, BB
and AB interaction. All integrals must be evaluated with a cut-off

'?1 - ?21 > d where d is a molecular length. Define

Ctd) = fd'-’r ..1 AZ
> Irie
Iri>d
and rewrite Eq. Al as
W W,
Fopw = - [—;—AVA+—‘;—'=v8)cm
A3

Wan . Vg 1
+(—+———w ]Idar IdSr -1
2 2 AB A 1 B 2 ‘?i-?z‘s

with V, the total volume of A solvent and Vy that of B solvent. We thus can

Waa Wgp
interpret - -E* C(d) and - —E‘ C(d) as contributions to the chemical
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potentials of the solvent molecules inside and outside the vesicle. By
assumption there is no osmotic pressure drop accross the membrane so we can

drop them.

For two plates separated by a distance t, Eq.A3 is easy to evalute:
W W,
nf Zan  FBB 4 _ 4
FrowS = 522+ 2 wﬂ]{dz zz} A4
with S the surface area. This must reduce to the well known resulté
Fypuw/S = = M, constant AS
VoW 12022 °

with W the Hamaker constant. We thus identify

Wan | ¥ss
T+—2—~WAB==W/2112 A6
Approximately, Wo, @ €,%, Wag @& €g% and W,5 & €,€5 while W ale, ~ eg)2.

Next we go to a tube of crogs-section r, length L. Then

F
% = J.rznpdp £ip) A7
0
with
+o 2n © -3
f(p) = W/2n2 I dz I dé I p'dp'[ p2 + p'2 - 2pp'cos($) + 22 ] A8
- o r

the energy density. This integral is a hypergeometric function, so is dif-
ficult to obtain Fypy in closed form. Numerical evaluation cannot be used

because the integral in Eq.A7 is strongly divergent at p=r. To circumvent
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this problem, we expand first f(p) in powers of p:
= 3 2 4
fip) € W/r ( 1/8 + 15/32 (p/r)” + O(p/T) AS

The series contains only even powers. Next, for p close to r it is easy

to show that f(p) reduces to the standard expression of Derjaguin:6

1
(r - p)3

fip) € W/12n + ... A10
Equation A10 is not of the analytic form indicated by the power series
Eq.A9 as it contains odd powers of p/r. It is simple to rewrite Eq.A10

to avoid this problem:

£(p) = (273m w3 { c + [ E 2 ]3 } A1l
1 - (p/T)

with C an undetermined constant. We choose C by demanding that £(0) =
W/8r3 (see Eq.A9) so C =(3n/16 -~ 1). Now, f{(p) has the limiting form of
Eq.A10 without violating the form imposed by Eq.A9. If we expand Eq.Ai1
in powers of p/r then we find that coefficient 2/m of the (p/r)2 term is
close to the correct value 15/32. The coefficient of the zero order term
is the correct 1/8 by construction. We conclude that Eq.Al1 is a
reasonable approximation to f{p) for all p in the range 0 to r.

Performing the integral in Eq.AT gives:

Fyow o oo Wr

W
T @ - (e Z A12

with C* a constant.



C7-71

The first term in Eq.A12 is proportional to the surface area Lr. It
is thus a contribution to the surface energy. The total surface tension
is assumed zero S0 we can drop the term. The remaining term is the second
term of Eq.2 where we assumed r(z) to be slowly varying with Z on a scale
of order r.

The reason why the van der Waals pressure is inhomogeneous follows

from the condition of hydrostatic equilibrium

ap af

5; 2 Aig

with f our free energy density. It follows from Eq.A11 that P is very large

near p = r.



