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ABSTRACT 
We simulate and explore the properties of chaotic ray paths in a 

weakly range-dependent, deterministic ocean. Chaos results from 
nonlinearity of the differential equations that determine the ray 
paths, rather than from randomness in the model of the medium or from 
externally imposed noise. Extreme sensitivity to model details and 
initial ray conditions places a practical limit on the predictability 
of acoustic field properties, such as travel time. Chaotic ray paths 
are identified using the traditional Poincare section, power spectra 
and exponential sensitivity to initial conditions. We also discuss 
new diagnostic techniques that have some advantages over the 
traditional ones. 

INTRODUCTION 
The propagation of an acoustic wave in an ocean medium is usually 

described by a homogenous, partial-differential equation linear in 
the acoustic field. It is well known that the problem of solving 
such a wave equation in the eikonal or ray-theory approximation is 
mathematically equivalent to that of solving for the motion of a 
classical mechanical system. An approximate solution to the 
wave equation is constructed by integrating along ray paths which are 
obtained by solving equations analogous to Hamilton's equations of 
motion for the mechanical system. It is also known, as a result of 
work done in the last few years [I], that a classical mechanical 
system will have unstable or "chaoticH solutions unless the 
Hamiltonian is separable. Consequently, there will be chaotic ray 
paths in the acoustic propagation problem unless the wave equation is 
separable [2,31. This instability exists even though the wave 
equation is deterministic. In this paper we present some aspects of 
our work to identify chaotic ray paths and to investigate their 
properties. 

PROPAGATION IN A RANGE-DEPENDENT OCEAN 
We consider first a situation where the non-separability of the 

wave equation is due to a range-dependent sound speed. The square of 
the index of refraction is modeled as the sum of two terms, one which 
depends only on depth and a second which represents a small 
perturbation that is periodic in range 

where Cn is the Munk canonical sound-speed profile [ 4 ]  and 
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where C - 1.5 km/s, H = 1 km, 3( - 10 km, and A is a free parameter. 
The rayOpaths were obtained by solving the parabolic equation using 
the ray-theory approximation. This equation is thought to be a valid 
approximation to the Helmholtz equation for deep-ocean propagation. 

In searching for chaotic rays in the sound channel a type of 
phase-space diagram called a Poincare section is often useful: it is 
a plot of ray depth vs. ray angle with the range dependence of the 
ray path suppressed. A Poincare section samples the ray path every 
cycle of the range-dependent perturbation u(r,z), in our case, every 
10 km, thus emphasizing resonances that occur because of phase 
locking between the double-loop range of the ray, about 50 km in the 
ocean sound channel, and the wavelength of the perturbation. 
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Figure 1 

Figure 1 shows portions of two Poincare sections for 6 rays 
having launch angles varying from 7' to 12' in lo steps. For all the 
rays the source depth is 1 km. The two plots differ in the values 
taken for A, the amplitude of the perturbation. In the left-hand 
plot the amplitude is zero, corresponding to no range dependence in 
the sound speed. The sections are collections of dots whose loci are 
smooth, closed curves. 

The right-hand plot corresponds to A = 0.01. The 7' curve is 
again continuous, though distorted. The go, 11°, and 12' curves have 
a completely different topology. They are broken up into island 
structures which indicate that the rays are locked in resonance with 
the perturbation. Separating the two types of curves, the distorted, 
continuous curve and the island structures, is a bounda~y (not shown 
in the figure) called the separatrix. Ray paths having Poincare 
sections near this boundary are chaotic. They have a characteristic 
pattern consisting of what appears to be a random distribution of 
dots in a bounded region of phase space. In this example, both the 
8' and the 10' rays are chaotic. Their sections consist of 
intermingled dots occupying the same bounded region. 

What is the significance of chaotic rays? Why are they unstable? 
A chaotic ray is unstable because it is not robust. Any small 
uncertainty in the initial conditions or the environment will create 



a large change in the ray path. Consider, for example, two ray paths 
both having the same source depth but differing in launch angle by an 
infinitesimal amount. The difference in depths of the two rays, 
divided by the difference in launch angles, oscillates considerably 
with range. On the average, however, it grows linearly for a regular 
ray, whereas for a chaotic ray it grows exponentially, indicating 
physical instability. The coefficient in the exponent is the largest 
Lyapunov exponent, in the language of dynamic systems theory [I]. 

Sensitivity to the small-scale structure of the environment, 
i.e., to the parameters which appear in the wave equation, implies 
structural instability. Two ray tracings of a chaotic ray 
corresponding to values of a parameter which appears in the model for 
the sound speed differing by a fraction of a percent can show 
divergence after only a few hundred kilometers. 

In closing this section we note chaotic ray paths have been found 
using other models for the range dependent part of the sound speed, 
including those for which the perturbation is not periodic, and using 
ray paths which satisfy the eikonal equation for the Helmholtz 
equation rather than that for the parabolic equation. 

IDENTIFYING CHAOTIC RAYS 
Three standard methods for identifying chaotic trajectories are 

the construction of Poincare sections, the construction of power 
spectra of the ray path, and the calculation of the largest Lyapunov 
exponent. Because they have some computational disadvantages for 
underwater acoustics, we have been developing more suitable methods 
151 - . - a -  

Since a small change in the launch angle of a chaotic ray leads 
to a large change in its structure, a direct way of finding a chaotic 
ray is to plot some ray characteristic as a function of launch angle. 
The launch angles for which the curve rapidly changes define possible 
chaotic rays. Figure 2 shows two examples which illustrate this 
approach. Both plots in this figure correspond to the case A = 0.01 
for which rays in the vicinity of 8' and 10 are chaotic. In the 
lower plot, the depth of the ray at a range of 500 km has been 
plotted vs. launch angle. One clearly sees rapidly-varying structure 
associated with the two chaotic rays. The variation is so great that 
this structure cannot be resolved using an increment in launch angle 
as small as 0. OOlO. 

In the upper plot, ranges to sound-channel-axis crossings have 
been plotted vs. launch angle. There are regions where the curves 
are flat indicating phase locking with the perturbation. Chaotic 
rays occur during the transition to phase-locking. We have plotted 
axis crossings which, for this example, correspond to source-depth 
crossings. One can construct similar plots by considering the ranges 
to surface or bottom reflections. 
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Figure 2 
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We have mentioned only two of a number of methods we have 
developed for identifying possible chaotic rays. With them we can 
search for chaotic rays in those situations where the standard 
methods are inappropriate or difficult to use. 

In conclusion, we emphasize that our understanding of chaotic ray 
paths is still primitive and that many characteristics remain to be 
determined. The realization that ray paths can be unstable prompts a 
re-examination of acoustic remote-sensing techniques since full-wave 
solutions will also be sensitive to model details and initial 
conditons if ray paths are chaotic 161. This re-examination has 
just begun. Our tools are numerical propagation simulations and 
establishing similarities to known canonical problems in nonlinear 
dynamics. 
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