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In classical mechanics, the traversal time, or the time interval for a particle with 
energy E to travel from point 'a' to point 'b' in a one-dimensional potential V(z), is given 
by 

dz 
t - (1) 

At[E-v(z)]/m 

In quantum mechanics, the value of a dynamical variable is the expectation value of the 
corresponding operator. However, an exact quantum extension of Eq. (1) is not available 
because there does not exist a convenient Hamiltonian operator whose eigenvalue is the elapsed 
time[l]. The determination of tunneling time is therefore based on model calculations and 
computer simulations. 

A tunneling time can be calculated by studying the dynamics of a wave packet. The essence 
of the method is to relate the phase change ) between the incident and transmitted waves to 
the duration of the interaction with the barrier[2,3]. When applied to a one-dimensional 
square barrier of height Vo, and width d, the tunneling time is given by[4,5], 

4 2 2 2  kv sinh(2nd) - 2k nd(k -n ) 
= E L * =  m 

2 2 2 2  2 (2) Ak ak hkn 4k2n2cosh (nd) + (k -n ) sinh (nd) 
' 

where k=J2mE/h2, ~=J~~(v~-E)/R~, k y . / w ,  and m and E are the mass and the energy of the 
electron, respectively. For an opaque barrier (nd>>l), Eq. (2) becomes 

where vo=hk/m. The expression implies that the tunneling time is approximately equal to the 
decay length divided by the incident velocity. Also the tunneling time is independent of the 
barrier width. 

Another approach to calculate a tunneling time is to use the Larmor spin precession as an 
atomic clock[6-81. When an electron is in a homogeneous magnetic field B, it precesses in the 
direction perpendicular to the field with a constant angular velocity, WL-eB/(mc). By 
calculating the spin precession angle of a polarized electron beam, one can extract a 
tunneling time. In a previous paper[9], we have shown that if the magnetic field is applied 
throughout the space, the spin-precession tunneling time is identical to the phase time rp 

We have done computer simulations of a wave packet tunneling through a one-dimensional 
square barrier[lO] using the algorithm of Goldberg, Schey, and Schwartz[ll]. The results show 
that for a finite width wave packet, the tunneling time rd is linearly proportional to the 
barrier width. It is believed that the difference between rp and rd is due to the choice of 
wave function to model the electron. The phase method and the spin precession method both use 
a single wave component. This can be regarded as a wave packet with an infinite spatial 
extension. By contrast, the simulation uses a wave packet confined to a finite space region. 
Therefore, a direct confirmation of the analytical expression by the simulation is not 
available. If, however, one increases the spatial extension of the wave packet, the asymptotic 
limit of the simulation should be the analytical expression[lO]. 
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A tunneling time can also be determined with a time-dependent potential barrier. The 
following potential form has been considered by Buttiker and Landauer[l2], 

where Vo(z) and Vl(z) are constants for O<z<d, and zero otherwise. For small V1, the tunneling 
current is approximated by summing the three dominant terms, corresponding to the transmission 
energy of E and Efho. They found that the transmission probability T for the elastic tunneling 
term is the same as the one for the constant potential barrier Vo(z). For the inelastic terms, 
E+Aw, the transmission probabilities are 

where ~ B L  = (m/hlc)d. As seen from Eq. (5), T+ depends on the frequency w .  The response of the 
tunneling barrier is characterized by ~BL, which may be regarded as the tunneling time in this 
process. This characteristic time is proportional to the barrier width d. 

An experimental method has been proposed using a time-dependent barrier to determine the 
tunneling time[l3J. Some preliminary results have been obtainedll43, suggesting that tunneling 
time for a barrier with height of eV and width, of order A is about a femtosecond. 

The analyses of model and computer calculations of tunneling times have lead to the 
following conclusions: 

1) Tunneling time can be classified into essentially two categories, depending on whether the 
time is linearly proportional to 'd' or independent of d' in the regime where nd>>l, the 
opaque barrier limit. It is important to note, however, that for a thin barrier, there are 
still distinct tunneling times, characteristic of the model, but which differ from the 
tunneling times in the extrapolated thick barrier region. 

2) The phase method yields a tunneling time independent of the barrier thickness for an opaque 
barrier. Numerical simulation of a Gaussian wave packet tunneling through a barrier should in 
principle agree with the phase method. However, the former has a wave packet localized in 
space while the latter uses a plane wave to obtain an analytical expression. Our simulations 
show that a localized wave packet has a tunneling time linearly proportional to d. The 
preliminary computer simulations also suggest that tunneling time depends on the width of the 
packet. 

3) Spin precession in a magnetic field can be used as a clock. This can be related to the 
phase method. The Larmor spin precession tunneling time has been shown to be identical to the 
phase tunneling time, when the wave function and the barrier are immersed in the magnetic 
field. 

4) By studying the tunneling through a time-dependent barrier, one can also define a tunneling 
time operationally. The analysis of such a tunneling process shows that the tunneling time is 
linearly dependent on d. 

We may conclude that for a particle tunneling through a potential barrier, there is more 
than one characteristic time. The tunneling time can be determined only when the process it.is 
supposed to characterize is specified. That is, one cannot define a tunneling time without 
specifying the experiment used to measure it. 
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