

STUDY OF THE PREPARATION OF HIGH Tc SUPERCONDUCTING YBCO THIN FILMS BY A PLASMA-ASSISTED MOCVD PROCESS

Ding-Kun Peng, Guang-Yao Meng, Chun-Bao Cao, Chun-Lin Wang, Qi Fang,

Yue-Huan Wu, Yu-Heng Zhang

▶ To cite this version:

Ding-Kun Peng, Guang-Yao Meng, Chun-Bao Cao, Chun-Lin Wang, Qi Fang, et al.. STUDY OF THE PREPARATION OF HIGH Tc SUPERCONDUCTING YBCO THIN FILMS BY A PLASMA-ASSISTED MOCVD PROCESS. Journal de Physique Colloques, 1989, 50 (C5), pp.C5-149-C5-153. 10.1051/jphyscol:1989521. jpa-00229544

HAL Id: jpa-00229544 https://hal.science/jpa-00229544

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STUDY OF THE PREPARATION OF HIGH TC SUPERCONDUCTING YBCO THIN FILMS BY A PLASMA-ASSISTED MOCVD PROCESS

DING-KUN PENG, GUANG-YAO MENG, CHUN-BAO CAO, CHUN-LIN WANG, QI FANG, YUE-HUAN WU* and YU-HENG ZHANG**

Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China *Department of Modern Chemistry, University of Science and Technology of China, Hefei, Anhui, China **Department of Physics, University of Science and Technology of China, Hefei, Anhui, China

Résumé Une méthode de CVD organométallique assistée par plasma a été développée pour préparer des films minces supraconducteurs (YBaCuO) à température inférieure à 400°C. L'étude préliminaire a montré que les films recults "in situ" ou non recuits, ont une structure orthorhombique, de composition approximative $YBa_2Cu_3O_{7-X}$ sous certaines conditions. Dans le cas d'un film déposé sur un substrat en verre, une chute de résistance de 90% entre 110K et 77K a été obtenue. L'influence des paramètres de dépôt a été examinée.

Abstract- A plasma assisted MOCVD technique was developed to prepare Y-Ba-Cu-O superconducting thin films at low temperature, typically below 400°C. The preliminary result showed that the as-deposited or in situ plasma annealed films on a number of substrates exhibited orthorhombic structure, and of approximate YBa₂Cu₃O_{7-x} composition under proper operating conditions. A resistance drop of 90 % at 77 K with the onset above 110 K was obtained in a film deposited on glass substrate. The deposition behaviour and the influence of deposition parameters on the deposites were also examined.

The discovery of high Tc superconductivity in Perovskite-related oxides has sparked wide interests in preparing and studying thin films of these materials for both scientific and technological reasons. A variety of techniques, such as electron beam evaporation /1/, sputtering /2,3/, pulse laser deposition/4/, molecular beam epitaxy/5/ and chemical spray deposition/6/ etc. has been successfully employed to obtain superconducting thin films with zero resistance above 80 K. However, all these techniques have a common problem, i.e an ex-situ post-annealing at high temperature, typically higher than 850°C, is required. This does not only limit the substrate choice within a few materials, such as SrTiO₃, YSZ, MgO and BaF₂, but sometimes also provides a poor surface morphology undesirable to device applications. Dispite there was a report on sputtered films which were superconducting without post-annealing/3/, the substrate temperature was over 650°C, which is still too high to be compatible with the state of micro-electronic (say, IC) processing.

It is well known that metallorganic chemical vapor deposition (MOCVD) is currently the dominant techniques in the deposition of large-area device quality III-V and II-IV compounds with relative lower depostion temperature/7/.Furthermore, plasma-assisted CVD process has demonstrated substantially to lower the depostion temperature /8/.Just before the breackthrough of 90K high Tc superconducting oxides, we successfully prepared Yttria stabilized ZrO_2 (YSZ) thin films by using a plasma- MOCVD process at a substrate temperature bellow 200 °C /9/.Therefore, we have focused on the development of a similar process for synthesis of YBCO thin films. A tentative success was obtained in November, 1987 /10/.

The selection of precursor with suitable transport properties was the first step in concerning the deposition system. The experince in using betadiketonates of Zr and Y for YSZ thin film/9/ enabled us to follow the same way. The copper acetylacetonate, $Cu(CH_3COCH_4COCH_3)_2$ [Cu(AA)₂] is known to be volatile/11/. The corresponding Yttrium acetylacetonate was reported to be

JOURNAL DE PHYSIQUE

nonvolatile, whereas other Yttrium chelates with fluorinated and non-fluorinated groups substituting in the 1 and 3 position of the beta-diketone ligand were demonstrated as volatile at $150^{\circ}C - 250^{\circ}C / 12/$. In order to avoid possible undesirable side reaction from the presence of fluorine atoms, (as mentioned by Berry et al./13/) we choose the volatile Yttrium 2,2,6,6, tetramethyl-3,5-heptanedionate, $Y[CH_3C(CH_3)COHCOC(CH_3)CH_3]_3$ [Y(DPM)] which was made in our lab./12/. The Ba precursor, Ba(DPM)₂ was synthesized according to the same procedure. It was furtunately found to be remarkably volatile in reduced pressure system in our case, though it was reported to be nonvolatile under certain conditions/14/.

The deposition system is schematically shown in Fig.1. It consists of four chambers made of quarts. Three of them for individual metal precursor were wrapped with heating tapes to maintain at different temperature. A mixture of Ar and O_2 was used as both carrier gas and reactant (O_2) . The deposition reactor was coupled with a radio frequency generator (13.56 MHz) for creating plasma(glow discharge) and the temperature was kept at about 300 °C by a heat plate and infrared lamps. $SrTiO_3$, YSZ, MgO, Sapphire , quarts and glass were tested as substrates. Some other operation parameters were:

- r.f geneator power: 100 w
- substrate temperature: usually bellow 300 °C

temperatures for sources: 150°C, 150°C and 250°C for Cu, Y, and Ba, respectively

carrier gas flow rate: 10 - 20 sccs for each source system pressure : approximately 2.0 torr

After deposition, and sometimes in situ plasma annealing , the deposition reactor was cooled down to room temperature under flowing pure atmospheric oxygen . During the introdution of different sources , we observed that the color of the plasma glow changed distinctly. This enable one to roughly estimate

how the deposition proceeds. The transport and depostion behaviour of each precursor source depends on the source temperature , carrier gas flow rate, substrate temperature , frequency and power of r.f. generator, Ar/O_2 ratio of carrier gas , system pressure etc. Fig. 2 typically shows the relative contents of the three metals in the films deposited on substrates at different position away from the source location, analyzed by a plasma spectrometer. The three precursors obviously have different pyrolysis and depositon behaviour .

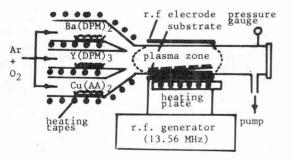
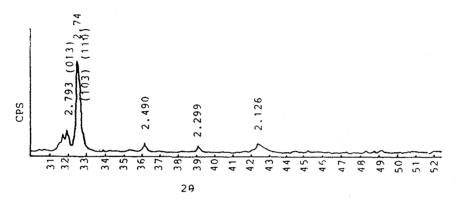


Fig.1 Schematic presentation of the plasma assisted MOCVD system for YBaCuO high Tc superconducting thin films.


Fig.2 The relative contents of three metals in the films deposited at different position, showing their different deposition behaviour of the precursors.

The curves in Fig.2 indicated that most of Cu and Ba would be deposited out when they entrance the plasma zone, while the deposition of Yttrium showed a linear relation with substrate position which means that beta-diketone of Yttrium needs higher activation energy to perform depositition , compared with the former two. However, it is possible to adjust deposition parameters to get a right ratio for three metal elements in the growing layer, though it depends much on the feasibility of the design of CVD set up

Under proper operation conditions films could be obtained with rather smooth and bright surfaces, comparable to that of well polished substrate. The film thickness was within $0.2 - 1.0 \ \mu m$ in a deposition time of 30 to 60 min. Electrical measurement indicated that the films could be metallically conducting, semiconducting and insulating at room temperature

as was frequently reported before for bulk YBCO sintered bodies , due to poorly compostional control.

Fig. 3 is the XRD pattern of a film deposited on YSZ single crystal substrate. The appearance of strong peaks at the position for (013)(110)(103)

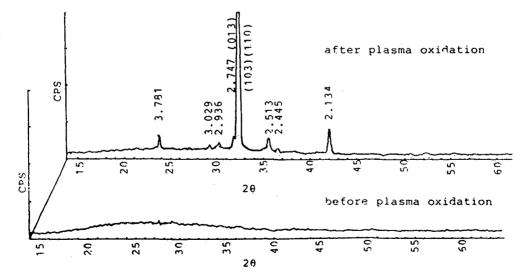
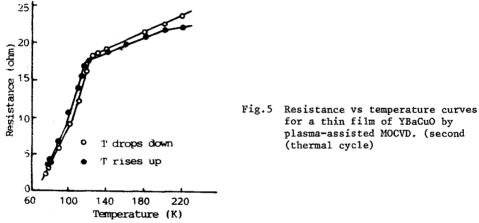



Fig.4 The XRD patterns of a YBCO thin film deposited on glass substrate, before and after plasma oxidation.

lanes of othorhombic YBa₂Cu₃O_{7-x} demonstrated the formation of this compound as a major phase and partially preferable orientation of the film, compared with the XRD pattern for bulk materials. The films deposited on amorphous (glass) substrates were usually amorphous. But it could be crystllized by in-situ plasma oxidation. Fig.4 illustrates this situation. As can be seen as-deposited film exhibited a typical amorphous XRD pattern, while after 60 min in-situ plasma treatment(only Ar/O₂ gas and without introducing source vapors) it showed strong (013)(103)(110) peaks of the orhtorhombic YBa₂Cu₃O_{7-x} phase

Resistance measurements were carried out with a standard DC four probe technique in temperature range of 77K to 300K. Electrical contacts were made by pressing metal indium particles onto the film surface. Fig. 5 shows the R-T curve for the film mentinoned above. It can be seen that the superconducting transition onset temperature is above 110 °C and resistance dropped 90 % down to 77-78 K. This behaviour did not change in several thermal cycles. However, the film lost its superconductivity after being expored to air and re-making silver contacts for re-measurement with a more precise equipment in a liquid helium cryogenic system. This was certainly attributed to the unstability of the superconducting phase to moisture, as indicated in many papers. Up to date wew have not got a better sample, showing zero resistance at above 77K, mainly due to our poor CVD system, which was not able to be well adjustable. The work to set up a new system is in progress

Nevertheless, this preliminary result has proved the feasibility of preparing high Tc supercoducting oxied thin films, including Y-Ba-Cu-O and possibly Bi-Sr-Ca-Cu-O or others, at really low temperature without need of an ex-situ high temperature post-annealing. Recently, there have been several reports on YBCO thin films by using MOCVD process/13,15/. In these works, the same kind of precursors, beta-diketonates of Y, Ba and Cu, were employed. However, the deposition temperature was no below than 650°C. And, the as deposited films were amorphous and a post-annealing(> 900 °C) was still necessary for obtaining superconductivity. As a matter of fact, the formation of orthorhombic YBa₂Cu₃O_{7-X} phase with superconductivity is thermodynamically favourable in low temperature range. The plasma embient provided sufficient activation energy to the reactant species for low temperature formation of this phase. Evidently, this was the right reason of the success in our case. It is believed that well developed CVD technology and control system would be able to make this plasma-assisted MOCVD process to be one of the most promising techniques for high Tc superconducting oxide thin films and even for large scale production of high Tc superconducting ribbons.

We gratifully acknowledge the financial supports from the Research Center for High Tc Superconductors of China and the Scientific Fundation in China.

References

/1/. Bao Z., Wang F. Jiang Q. et al, Int. J. Modern Physics B, Vol. 1No. 2(1987) 535 /2/. Hong M., Lion S.H. and Davidson B.A. Appl. Phys.

Lett., 51, 694(1987)

Adachi H., Kumiko Hirochi, Setsune K., et al. /3/. Appl. Phys. Lett. 51(26)2263(1987)

/4/. Inam A., Hedge M.S., Wu X.D., Venkateesan T., et al.

Appl.Phys.Lett.53,908(1987)

/5/. Kwo J., Hsieh T.C., Fleming R.M., et al. Phy. Rev. B 36,4039(1987)
/6/. Meng G-Y,Wang X-D, Chen X-J,Fu P-Zh, Yang P-H, Peng D-K, Zhang Y-H, et al. Int. J. Modern Phys. B, Vol.2(2) 579(1987)
/7/. Meng G-Y, Chemical Vapour Deposition and New Inorganic Materials, Science

Publishing House, Beijing, 1984.4 (in Chinese)

/8/. Peng D-K and Meng G-Y, Micro-electronics and Technological Equipments, 1-2,28(1986)(in Chinese)

/9/. Peng D-K, Fang Q., Hu K-A and Meng G-Y, Proc. of 8th Int. Conf. on Plasma Chem., P.1142, Tokyo, Aug. 30-Sept. 5, 1987

/10/. PRC. Patent Appl. No: 88100403

/11/.Ryabova L.A., in Current Topics in Materials Science, ed.by E.Kaldis ,North-Holland. Amsterdam. Vol.7, pp598, 1981.

/12/.Yu H.,Hu L-Sh,Peng D-K and Meng G-Y, Chemical Reagents,8(2),117 (1986)

/13/.Berry A.D., Gaskill D.K.Holm R.T. Cukauskas E.J.,Kaplan R. and Henry L. Appl. Phys. Lett.Vol.52.No.20.16 May 1988

/14/.Berg E.W. and Herrera N.M., Anal. Chim Acta 60,117(1972)

/15/.Zhang K., Kwak B.S., Boyd E.P. Wright A.C. and Erbil A., Appl. Phys. Lett. 54(4),23 Jan.1989