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RBsume. Cette contribution prbsente le formalisme et (luelques rbsultats importants spbcifiques de 
I'etude des r6seaux de neurones avec les outils de la physique statistique. 

Abstract. This contribution introduce the formalism and some important results specific of the 
statistical physics approach to neural network modeling. 

1. BASICS 

A general introduction to neural network modeling has been given in this 
workshop by G. Dreyfus. Other reviews can be  found in /1,2,3,4/. 1 will 
present here some aspects of the specific approach of people working in 
statistical physics. In this section I will introduce the formalism and the 
main results on the Hopfield model of neural network. In section 2 and 3 1 
will present recent results respectively on the storage capacity and on the 
dynamics of neural networks. 

We are interested in the properties of a large number N of formal 
neurons (the large N limit being the analog of the thermodynamic limit). Each 
formal neuron i, i=f ,N, is described by a spin like variable, S i ,  being + 1 
(neuron firing) or - 1 (neuron quiescent). The dynamics of this network of N 
neurons is governed by the synaptic efficacies Jij which characterize the 
property of the synapse from neuron j to neuron i. Considering the high 
connectivity in the cortex, a simple choice is to connect each neuron to 
every other neuron : Jij # 0 for all (i # j). Each neuron compute its "local 
field" hi(t) . 

and 

+ 1 with probability 141 + exp - 2phi(t)] 
S,(t+*t) = ( 

- 1 with probability 141 + exp + 2phi(t)] 

where p = 1/T is a temperature-like parameter modeling the intrinsic noise 
of the system. For random sequential updating, the dynamics corresponds to 
the usual Monte Carlo algorithm. Hopfield /5/ pointed out that if we make 
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the (unrealistic) assumption that the Jij are symmetric, then one can define 
an energy E : 

and we end up with a spin like system. 
Now we would like to choose the Jij such that a set ({ciP, i = 1, N), p=l ,p) 

of p patterns to be learned are fixed points of the dynamics. The standard 
choice151 follows the "generalized Hebb rule" : 

p= 1 

Different versions of this model have been introduced and studied by 
many authors /4,5,61. Two points were made clear by the elegant 
presentation of Hopfield 151: first, recognition of a stored pattern is viewed 
as the convergence of a dynamical system towards an attractor - the set of 
activity coding this pattern. This notion of memories as attractors renders 
natural the possibility of retrieving a complete pattern starting with a noisy 
or incomplete pattern. Second, as shown above, the formalism make explicit 
the link with statistical physics, so that it is possible to apply the methods 
of this domain. 

In the framework of statistical physics, it is natural to work with an 
ensemble of patterns with the same statistical properties. In particular, if 
we choose the 5, at random, with c iP= f l  with equal probability, Jij can be 

either positive (the synapse is then excitatory) or negative (the synapse is 
inhibitory): indeed we know from the spin-glass theory I71 that such a 
situation can lead to many (meta)stable states. Noting that (3) can be 
rewri t ten 

we see that if the patterns are orthogonal, the ground states of the system 
are exactly the patterns 5P. For random patterns, the patterns are only 
statistically orthogonal. In this case however, the thermodynamics of the 
model can be solved 121. The main results are the following: if the number of 
pattern p is smaller than a critical value p, = a,(T)N, with'a, - 0.14 at T=O, 
then the network operates as an associative memory. Starting with an initial 
configuration not too far from a stored pattern {P, the network converges 
toward a fixed point SP which is very close to the stored pattern i f  we call 
m, the overlap of SF on 5P : 

m, is at least equal to 0.97 (at zero temperature). If a = p/N is greater than 

a,, the system enters a spin-glass phase, and all retrieval properties are 
lost. 

Many studies have been made on variants of this model - e.g. in order to 
store patterns of a given mean activity leve1/2,8/. Simple modifications of 



the learning rule can prevent from the deterioration of the memory: one 
obtains short-term memory models, where new patterns can always be 
learned whereas older patterns are progressively forgotten 191. It has been 
shown that random dissymmetrization or dilution of the network do not 
affect qualitatively the properties of the systemM/. Moreover the dynamics 
of a highly diluted and asymmetric model/lO/ can be solved exactly. The 
main qualitative results are that one keeps the notion of memories as 
attractors, and that the capacity is proportional to the connectivity C - that 
is the typical number of neurons to which any neuron is connected : 

pc = acC . (6) 

2. MAXIMAL STORAGE CAPACITY 

The scaling (6) is not surprising: the information concerning the p 
patterns of N "bits" is stored in NC synaptic efficacies, so that we can 
expect pN , NC. One can then ask: what is the maximal possible capacity (for 

some optimized choice of the Jij)? For random patterns the nonintuitive 
result is/1 1,12/: 

a,, = 2 

Note that this is the optimal capacity when one requires exact retrieval (m, 

= 1 for every p). The next question is of course: is there any algorithm which 
allows to reach this theoretical optimum? The answer is yes: there are 
iterative learning algorithms/l2,13,14/, all of them being variant of the 
'Perceptron algorithm'/l5/(introduced 20 years ago!). This algorithm is 
simple. First, note that a pattern t p  is a fixed point of the dynamics (at T=O) 
i f 

for all i, i=l ,N tip hip > 0 (7) 

where hiW is the local field when in the state tp: 
hip = E.J--t.P 

J 'I 1 ( 8 )  

For each site i (i=l,N), the algorithm compute (Jij, j=l,N). It proceeds as 
follows, for each value of i: 

t-0. Start with Jij -0, j=1 ,N 
Pick a pattern p at random 

If ti!J hi, > 0, go to * 

else, t t t+l ; ( Jij t Jij + tipgjp ), j=l ,N; go to *. 
A theorem1151 states that, if a solution exists (that is if there exists at 
least one matrix such that (7) is true for every pattern), then after a finite 
number of steps t, the algorithm gives a solution. 

3. STABILITY AND BASINS OF ATTRACTION 

So far nothing has been said on the associative properties of the 
network: once a set of patterns has been learned with a specific learning 
rule, one would like to know what are the basins of attraction associated 
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with each pattern. Two important results have been obtained recently. First, 
the basins of attraction are circular in probability: an initial configuration 
Si,i=l ,N with an overlap q with one of the stored patterns, will evolve with 
probability one towards this pattern (under the dynamics (1),(2)) if q is 
greater than some critical value q, 116,171. Second, the value of q, depends 
mainly on one family of parameters, called the stabilities, defined for each 
pattern by 

(note the normalization which fix the scale of the coupling matrix). As seen 
above, a pattern is stable if ail these stabilities are positive. The result 
here is that the greater they are the larger the basin of attraction (the 
smaller qc)/16-181. The stabilities are the main parameters controling the 
dynamics. The next important parameter is the degree of symmetry of the 
matrix Jij: knowing the stabilities and the degree of symmetry of the matrix 

(Jij), one can compute a good approximation of q, 11 71. 

Thus if one wants to have the best possible associative properties one 
would like a learning rule which gives large values of stabilities. In fact an 
algorithm, again a variant of the Perceptron algorithm, has been proposed 
recently 1141 which allows to reach the largest possible stability K, where 
K is the smallest of all the stability parameters. Given a set of patterns - 
any set, not necessarly random-, any Perceptron type algorithm will find one 
solution - provided there exists at least one. The optimal algorithm will find 
the solution which gives the best possible minimal stability for this set of 
patterns, insuring thus the largest possible basin of attraction. 

I have presented some of the recent results obtained within the 
framework of statistical physics. These results show the progress made in 
the comprehension in the associative properties of neural networks using a 
typical strategy of statistical physics: models are analyzed in the large N 
limit, and quantitative results are obtained by considering statistical 
ensembles (here of patterns). 
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