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GEOMETRIC AND KINETIC MODELS OF FRAGMENTATION 

Division de physique ThBorique, Institut de Physique NucTBaire, CNRS 
LA, F-91406 Orsay Cedex, France 

Resume- Nous passons en revue quelques resultats recents de la theorie de la 

fragmentation. Nous discutons les statistiques qui resultent de differentes 

constructions geometriques et d'equations cindtiques de fragmentation. 

Abstract- We review some recent results on fragmentation theory. We discuss 

the statistics of various geometric constructions and those of kinetic 

equations of fragmentation. 

Particle fragmentation occurs in a wide range of phenomena in science and 

technology, including for example the formation of asteroids /l/ and stone 

debris / 2 / ,  the degradation of polymers /3/, the fragmentation of atomic 

clusters /4,5/ and atomic nuclei /6,7/. Recently there has been considerable 

interest in predicting the evolution of the particle-size distribution during 

fragmentation. This is because it is commonly believed that such distributions 

contain basic information on the fragmentation process itself, one of the 

goals being to achieve a classification of the various fragmentation 

mechanisms. A particularly significant outcome of these studies is the 

realization that in many circumstances the fragment-size distribution is 

scale invariant /8,9/. Than such a classification would be possible through a 

scaling formulation. In most of this work solutions have been found for two 

types of theories: Geometric fragmentation and kinetic fragmentation. 

Statistics of geometric fragmentation 

In the geometric statistical fragmentation one considers the problem of the 

random partitioning of a line, a surface or a volume, i.e. the processes 

involving the random positioning of points, lines or surfaces in bodies of 

dimension d=1,2 or 3 respectively. Remark that neither the explicit tine 

dependence nor the detailed breaking mechanism .between microscopic 

constituents is taken into account in these theories. Then deviations of 

observed fragment-size distribution from those predicted from these statistics 

would be expected to result from the above simplifications. 

In -one dimension, the geometric statistics seem to be well defined. For 

example, consider n-l points of abcissas X I ... X n-l uniformely random 

distributed in a linear chain of lenght L (taking x;O and xn= L 1. The size 1 

of the n fragments is defined as 1 = X.-X ( 1 5 i 5 n 1. Than the number of 
1 l i-1 

fragments of size 1 is distributed according to a binomial distribution 
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In a continuous system or when n , 1  and L goes to infinity, Poisson statistics 

apply and 

N(1,n)  = n2/ L exp  ( - 1 n/  L) (21 

A different approach is given by percolation theory / 1 0 / .  A linear chain of L 

points or sites are connected by L-l bonds. Each bond may be either active 

with a probability p or inactive with a probability I-p ,  the same for all 

bonds. Points connected by active bonds form a fragment. The number of 

fragments of size 1 is given by 

that reduces to 

for infinitely long chains. We remark that in the first approach (eqs. (1) and 

(2) the number of fragments n is fixed, while in percolation theory p is 

fixed and the number of fragments is a fluctuating quantity, the mean value 

given by 

For large L , ]  and n it is easy to prove the equivalence of the two theories. 

From (4) and ( 5 )  one gets 

and inserting in (4).one recovers equation (2). 
Experimental tests, in which long thin strips of glass or thin ductile metal 

rings are broken randomly, show good agreement with distribution (2) in a 

rather wide range of fragment sizes /11,12/. This agreement could support the 

hypothesis that the broad trend of the distributions is independent of 

specific material properties and time evolution of the fragmentation process. 

In more than one dimensions the statistic of geometric fragmentation are much 

more complex and still many basic points have to be understood. For example, 

what means uniform random fragmentation of a surface or a volume ?. Mott 

proposed in 1943 /13/ the forms 

N(a, n )  c< exp  ( - (2an /  A ) ' ' ~ )  

N(v ,n )  a exp  ( - ( 3 v n /  



for the distributions of fragment areas a and volumes v from an initial area A 

and volume V, respectively. This conjecture was based on the analysis of 

fragment distribution data from explosively fragmented thick-walled shells, 

which indicated an exponential distribution with argument proportional to 
1/3 m . where m was the mass of the fragment. In addition, formulae (7) and (8)  

appeared to be a natural extension of formula (2) to more dimensions. However 

this prescription is by far not unique. One can imagine many other uniform 

random statistics in dimension d > 1. For example, Grady and Kipp /12/ 

suggested that the fragment area has to be viewed as a scalar variable. This 

assumption leads to a fragment distribution similar to ( 2 )  

N(a,n) U exp 1-a n/ A )  (9) 

The multiplicity of statistics arise from the fact that there are many ways to 

define random lines on a surface or random surfaces on a volume. Grady and 

Kipp have studied by computer simulations the fragmentation of a surface by 

straight lines distributed, oriented or connected at random. In some cases the 

Mott distribution (7) gives a good description of the observed area 

distributions while in other cases the linear exponential distribution (9 )  is 

definitively better. For the Voronoi construction, both are wrong. 

Percolation theory on d > 1 lattices provides a much richer statistics because 
it allows for much more complex shapes of the fragments. In addition, the 

shape of the cluster size distribution depends drastically on the value of the 

parameter p defining the probability that bonds be active. When p is close to 

one most points are connected forming one (and only one) large cluster called 

percolating cluster. This cluster coexists with very small other clusters. The 

size distribution of these small clusters is exponential-like and the 
distribution of all clusters is U-shaped. In the opposite, when p is close to 

zero most points are isolated or belong to very small clusters. The size 

distribution is again exponential-like. For large systems a sharply defined 

percolation threshold p exists such that for p < p no percolating cluster 
C 

exists and for p > pc one percolating cluster exists. At the percolation 

threshold p the size distribution is a power law 
C 

with a critical exponent -c 2 2. This behaviour is shown in figure 1 for a 

cubic lattice containing 53 sites. The transition from a non-percolating 

state to a percolating state is a kind of (second order) phase transition. 
The percolation transition is a purely geometrical transition in which the 

clusters are clearly defined static objects. 

The structure of the clusters also changes drastically with p. Above pc the 

percolating cluster is a compact object with a rather regular surface. Below 

p the clusters have a very ramified structure, much more complex than the 
c 

ones obtained by the linear constructions of Grady and Kipp. 

Percolation ideas have been succesfully applied to fragmentation problems in 

various contexts /14-16/. 
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Fig. 1 - Number of clusters N ( s , p )  of size S in a cubic lattice with 5' 
sites at concentration of active bonds p = .l5 (right), p = .30 (center) 
and p = .45 (left). The mean number of fragments <n> is also indicated. 
Average over 1000 trials. 

Statistics of kinetic fragmentation 

So far we have described static approaches of particle fragmentation. In some 

physical situations it is important to take into account explicitely the time 

evolution of the fragmentation process. One postulates the validity c of 

the system of kinetic equations 

Here n (t) is the number of fragments of size X per unit volume at time t. The 
X 

first term in the right-hand side represents the loss of particles of size X 

due to the breaking into smaller ones at rate a(x). The integral term 

represents the increase of particles of size X because of the breakup of 

larger ones. The rate at which X is produced from y is denoted by f(xly). This 

quantity must be normalized so that mass is conserved 

The average number of fragments produced per single Fragmentation step is 

given by 

For the particular case of binary breakup, f(xly)=f(y-X, y )  and N=2. 

Exact solutions of equations ( 11 ) have been obtained for various homogeneous 

breakup kernels, i.e. for kernels that satisfy 



For example, for random scission where chains break independently of their 

lenght and bonds break independently of their position within the chains, than 

h=l and b(x/y) = 2. For monodisperse initial conditions n (0) = 6(x-L), L 

being the initial lenght of the chain, the solution is 

nx(t) = exp (-xt)[~(x-~)+~t+t~(~-x)l (16) 

which is as expected equivalent to equation (2). 

McGrady and Ziff /17/ have found the general solution for kernels of the form 

b(x/y) = (X/Y)~, in which the number of particles produced per step is 

i=(v+2)/(v+l), independently of y. A "shattering" transition takes place when 

h < 0 , in which clusters of indefinitely decreasing size are produced. It 

results a lost of mass to a phase of "zero" size particles. However this is 

nothing but an artifact due to the continous model. In a discrete version of 

equations (111, shattering would correspond to a rapid accumulation of 

rnonomers. Remark that this process is analogous to but opposite from, the 

gelation found in aggregating systems, for which the evolution with time of 

the size distribution resembles that of percolation as a function of the 

parameter p. 

In summary, fragment size distributions depend strongly on the fragmentation 

process . Thus inspecting the experimental data it is possible to gain insight 
into the physical mechanism of fragmentation of clusters interacting with 

surfaces and materials. 
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