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ABSTRACT 

A fundamental problem in the use of a central pair-force model for defect problems is 
that it omits three-body and higher terms which are necessarily present in real systems. 
Electronic fluctuation effects are also usually omitted. While these can be small in the 
simple metals, they are significant in noble and transition metals, as shown by a simple 
real space argument. To gauge the importance of their effects in interface problems, the 
structure of a simple 5 twist boundary is examined, with the atoms described by both 
pair- and three-center interactions and as a function of the relative strength of the two. 

I. INTRODUCTION 

In this article we address the applicability of an almost universal assumption made in dis- 
cussing the energetics of grain boundaries: this is the assumed existence of pairwise central forces 
between atoms. We do not discuss here the methods with which such calculations are carried out 
and the resulting structures themselves. These matters are fully described in the review articles 
by Sutton and Vitek' and elsewhere. 

The development that follows will be concerned with an elemental system; this is for purposes 
of convenience only, and it is clear that the ideas will be applicable mutatis mutandis to alloy 
sy:tems; Suppose we have an assembly of nuclei and electrons, the nuclei having coordinates 
(R1, .., RN) with N - in a practical case. Because the nuclei are overwhelmingly massive 
compared with the electrons, the statics and dynamics of the system can for most situations be 
described by the Hamiltonian 

where gi is the momentum of the nucleus i (whose mass is M) and @(l?1, .., I&; V) is the total 
+ - 

N-particle potential energy when the nuclei are in the configuration R1, .., RN. The volume V 
is included as a variable of @ because in general the states of H are not necessarily insulating 
(among other things the state of a system might depend on external boundary conditions such as 
the If the system is metallic or possesses wide electzon bands, as in a semiconductor, 
then in the solution of the electronic problem2 (whose trace leads to (I)), there arise large volume 
dependent and structure independent terms. These are exceedingly important in metallic systems, 
which will form the focus of this paper. 
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11. PAIR POTENTIALS 

Before we specify the special arrangements of atoms (i-e., the selection of the gi) that are 
pertinent to the interface problem, we need first to enquire about the functional forms expected 
on general grounds for a. This question is of fundamental significance in treating bulk systems, 
bounded systems, and systems with low symmetry, especially those which lack the simplifying 
features of a space group. In systems with disorder or with important defects it is physically 
and certainly conceptually desirable to attempt to express the N-particle quantity as a sum of 
effective painvise potentials &, (again, they may be functions of volume). This replacement is 
justifiable from first principles arguments based on linear screening for simple metals describable 
by pseudopotentials3 and also from fluctuating multipole expansions which in lowest order lead to 
the familiar Van der Waals potentials.4 Most solids of technological interest lack these simplifying 
characterizations. Nevertheless, it is commonplace to assert that @(R1, .., RN; V) can be written 
as 

While (3) is more soundly based in metals than (2), neither is completely satisfactory in describing 
the stability of interfaces. Extended defects are generally analyzeds by omitting three- and higher- 
center interactions, which by quite general arguments are expected from the systematic expansion 
of @(R1, .., RN; V). Since short range repulsion is dominant, the consequent constraints from 
geometric packing would seem to make this an a priori reasonable starting point. Nevertheless 
more distant regions of potentials do play an important role. 

For molecular crystals it is easy to extract a dimensionless parameter that gauges the im- 
portance of three-center relative to two-center  potential^.^ An ion a t  the origin experiences an 
electronic fluctuation leading to an instantaneous dipole d (the magnitude of the fluctuation is 
governed by the polarizability of the ion). The field of this dipole, a t  a second ion a distance r away 
is Li/r3, and this induces a dipole of strength ad/r3. The inducing and induced dipoles lead to 
the mutual lowering of energy by an  amount proportional to -a2 *. This familiar argument is 
readily generalized by adding a third ion a t  distance F' from the origin. The induced dipole ad/r3 
in the second ion then induces a dipole of strength (ai /r3) ++ in the third, which interacts 

with the first to give an explicitly three body energy proportional to  a3 < ddd > /r3rt31r'- ?'I3 
(the Axilrod-Teller form). If we take a triangular arrangement as an example, then apart form mi- 
nor combinatorial factors, the ratio of three-body to two-body is given by crp(') where p(') - l / r3  
is the average atomic density. Since p(') - 1 0 ~ ~ / c r n ~ ,  it is clear that if a is as large as a few 
(A)3, then three-body terms arising from fluctuating multipole terms in quasilocalized charge are 
expected to be important. I t  is obvious that these kinds of interactions depend on angular dis- 
placements as well as on separations. In this respect they differ crucially from the pair-potentials. 
The condition a p ( ' ) ~ l  is satisfied for molecular systems in the heavier elements. An example is 
xenon; many-body forces have been shown to be important in its cohesive properties6 and also 
in its critical behavior near the gas-liquid t ran~i t ion .~  

However, this Van der Waals behavior is also present in the metallic state, both intrinsically 
in the uniform electron gas7 and also in quasilocalized charge such as the electronic distribution 
characterized by the d-orbitals in the noble metals. I t  is important to recognize that fluctuating 
multipole terms are direct manifestations of electron-electron correlation effects; as such they 
are fundamental but are included only in approximate form by self-consistent band theoretic 
approaches which a t  every step proceed from the construction of a one-electron (mean field) 
potential. Thus is a metal like copper, silver, or gold, with complete d-shells, the contribution to 



the cohesive energy from the d-electrons can be developed from a viewpoint which is quite different 
from the band structure technique and in some respects is preferable since the real space method 
involved leads quite naturally to bonds. As shown by Moriarty,8 band theory in combination with 
local density functional theory can lead to a systematic development of the energy of the system 
in terms of transferable multicenter interactions. This had earlier been noted in the somewhat 
more restrictive context of tight-binding by Carlsson and Ash~rof t .~  However, the importance of 
going beyond pair terms has been emphasized by Finnis, et al.1° 

Whether or not the terminology "Van der Waals metal" is appropriate in a given situa- 
tion depends entirely on the relative importance of electron correlation effects originating in the 
quasilocalized charge. The criterion can be framed in terms of the magnitude of the polarizabil- 
ity of the bound charge, which in turn is gauged by the polarizability (r of the free ions. As 
noted above, when this is sufficiently large that the parameter a p  is significant, then multicenter 
interactions are expected to be important. However, in a metal there are also pair interactions 
originating from the monopole terms so that for fluctuation effects to be relevant in the first place 
it is also necessary that they are significant in terms of the statically screened ion-ion interactions. 
More precisely, it is necessary that they be at  least comparable to the differences in structural 
energies produced by such terms. As shown recently by Maggs and Ashcroft," this situation 
prevails in the noble metals and may also prevail in some of the transition metals. Three body 
forces, inherently dependent on angular separations, are therefore important in these systems. 

111. THREE- AND HIGHER-ATOM POTENTIALS 

The standard argument given above for establishing the r-6 form of the fluctuating dipole 
dipole (Van der Waals) interaction is readily generalized to the case where the dipoles are embed- 
ded in an  electron gas whose plasma frequency is wp. The point is that if the dipole is endowed 
with a frequency w, then the corresponding field is now dynamically screened by the frequency 
dependent dielectric constant of the electron gas. If the fluctuations are dominated by a single 
excitation energy A (as is the standard Lorentz Oscillator model), then the frequency dependent 
polarizability is a(w) = (r(o)A2/(A2 - w2) and we find an approximate formula for the screened 
Van der Waals interaction of a metal with polarizable ions, namely 

which reduces to the standard result for an insulator when wp -t 0. This result can be compared 
immediately with the simplest screened point ion result for static interactions 

(where kTF is the Thomas-Fermi screening length) or perhaps more appropriately with the stan- 
dard linear screening pseudopotential result 

where Vp,(q) is the electron ion pseudopotential, and V,(q) is the electron-ion interaction were 
the ion to be a true point ion. In (6) ~ ( q )  is the density dependent static dielectric constant of 
the fully interacting electron gas. The results of calculations using (6) and its generalizations 
to non-local pseudopotentials lead to pair interactions that have a principal minimum which is 
typically a few milli-Rydbergs (a scale which is immediately expected from (5) since kTF - lla,, 
and characteristic near neighbor separations are several a,). From (4) we see that comparable 
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energies can be expected from fluctuating dipole interactions if a is one to  two A3 or SO. The 
key point here is that while molecular interactions are indeed small compared with bare Coulomb 
interactions, they are not small compared with screened Coulomb interactions, and for structural 
purposes it is to the latter that comparison should properly be made. 

Given this observation, we can immediately ask what forms the possible three-particle equiva- 
lents of (4) might take, that is, three ion interactions that depend specifically on the polarizability 
a. There is, first of all, a screened version of the Axilrod-Teller interaction described earlier for 
the insulating case; thus 

where r" = IF'- f 1 and f = 1 +3(i  . P ') ( i  ' . 7") ( i  " - i )  is numerically of order 1. By the argument 
given earlier if ap(') is appreciable, (which is also the condition that (4) is comparable to (5)--or 
(6)) to then the three-particle terms (7) will be comparable to the pair interactions. However, in 
the presence of conduction electrons (7) is not the only three atom term. There are also terms 
in involving a2(o), a(o) and even a three atom term lacking a altogether and originating entirely 
with the free electrons. These incorporate higher order response functions of the electron gas,6 
but apart from this their functional forms are similar to (7). It might be expected that such 
terms would automatically be smaller since in the perturbation sense they are associated with 
higher orders in the electron-electron interaction. This is not the case; the point is that non- 
fluctuating terms involve the response, and this is constrained by the perfect screening sum 
rule (%C-'(~,O) = 0); in contrast the fluctuating terms, which require c(q, w), satisfy no such 
constraint, and the corresponding interactions 4se2/q2c(q,w) are not small. I t  is important to 
note that the three-ion terms are not derivable from any band theoretic approach in which the 
corresponding corrections are not already included in the exchange-correlation functional. The 
fact that the three particle interactions as predicted by the method of multipole expansions are 
apparently than those obtained from mean field approaches8 certainly deserves further 
scrutiny. Moreover, it is clear that the validity of the multipole method is limited by the fact 
that in many practical systems the extent of the "localized chargen is larger than is physically 
reasonable for the expansion to be completely satisfactory. On the other hand, it is important to 
recognize that there exists no fundamental physical requirement that three particle forces shall 
necessarily be smaller than two-particle at  long range. This appears to be a possibility when a is 
sufficiently large (but still within physically reasonable bounds). 

IV. ATOM-ATOM INTERACTIONS AND INTERFACE STRUCTURE 

In order to test the ~ossible significance of three-ion interactions on grain boundary structure - - 
and stability and to practical solutions to the pair potential problem, we have studied a simple 
case, namely, a 1 5  twist boundary a t  the confluence of two (100) faces of FCC crystals. To 
clearly separate out the effects, we have simplified the sum of (4) and (5) so that jointly they are 
represented by an Van der Waals 12-6 potential, except that the defining constants are allowed 
to be dependent on local density. Thus 

for the pair term. All of the forms for the triplet potential that incorporate the ionic polarizability 
have the structure 

1 (6 f', f t l)  = c -f(7, F' , ?I1) 
r3r13r113 (9) 

where f = 1 + 3(P. P1)(P' .P1')(P" . P). Note that 4(3) will be cut off at  short range by core-core 
exchange repulsion. The problem is now well posed; we simply relax the atoms of our structure 
according the (8) and (9). With C set zero the interface is described by the standard pair 



approximation. Increasing C from zero introduces triplet interactions into the problem. Notice 
that it is even possible in this scheme to examine the stability of triplet interactions alone (with 
appropriate short range repulsion appended). 

Under the action of pair forces alone we verify what is well known, namely, that the simulated 
positions taken up by the atoms in the boundary are largely determined by simple geometrical 
packing constraints originating with the hard core repulsive region of the pair potential. The 
largest relaxation occurs exactly a t  the boundary itself. I t  is important to note that this conclusion 
is dependent on the simple form of the pair potential used (see bdow). 

If we now add three-body interactions, so that the total potential energy of interaction is a 
sum of terms of the form 

the simulation can be repeated efficiently by starting with the positions of the ions stabilized 
under the action of the pair terms. The maximum value of A is taken to be 0.01; to set this in 
context, the "pair bond" energy of (10) is typically N -0.25, and in relative terms the "triangle" 
energy for equal bond lengths is 0.29 (i.e., quite large). For this value of A we find the additional 
relaxation of the atoms to be only about 10 percent of pair relaxations, but interestingly enough, 
they are two to three times larger in a direction perpendicular to the interface than they are 
parallel to it. Perhaps more importantly, the effects of the three-body terms are largest in the 
second plane from the interface and not in the interface itself. It should be noted that Bristowe 
and Crocker12 achieve a similar result but with the use of pair forces alone. 

In their study of relaxation a t  a grain boundary, Budai et a15 were not able to determine 
a unique pair potential which, when simulated, could yield displacements a t  the boundary even 
half as large as those observed experimentally. Though the results described above show that 
large three-body terms can have observable effects,13 these are comparable to changes that 
can result from even a minor alteration in the short range repulsive pairwise interaction. But 
this is precisely where density dependence can play a significant role in systems where the net 
pair force results from dynamically screened fluctuating-dipole effects and statically screened 
pseudopotential contributions. As shown by Mon et al,14 these two contributions have different 
density dependences; moreover, if the core-polarizability is sufficiently large, the pair potential at 
short range can acquire non-monotonic behavior (i.e., there are two relatively close positions where 
a pair would achieve zero force). Large displacements a t  a grain boundary are consistent with 
such a form of microscopic interaction, though as noted by Oh and Vitek l5 other interpretations 
originating in structural multiplicity are also possible. 
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M.I. Baskes: Would you mmment on the uniqueness of pair potentials? 

N.W. Ashcroff: I don't k n m  of any rigomus proof that the 

decconposition of the N-particle potential ip (R1, . . . , % ; V) into a 

volume term, pair term, triplet term, ... and so forth, is necessarily 
unique. Wlt if one proceeds f m  perturhtion theory after tracing 

out the electxon degrees of freedom, the proposition seem reasonable. 

On the other hand, if one starts frcin approximations to the N-particle 

problem, then it is not clear a unique potential would result. To 

give an exanple f m  the theory of liquids, the equations of state 

obtained f m  the virial route and compressibility route are 

different. If these were to be %nertedll (a gedanken exercise) to 

obtain the underlying pair potential, the results would clearly 

differ. We have to keep in mind that we are trying to deal with a 

many-body problem. 

W. Loikowski: Could you carmnent, in the view of your talk, on the 

physical background of the tight bonding approximation? 

N.W. Ashcxoft: This question is partly addressed in our recent paper 

(Maggs and Ashcxoft, Fhys. Rev. Letters, July 13, 1987). As shown by 

Moriarity, Finnis, Pettifor, Carlsson and others a systematic 

develcpmt of pair and multi center interactions can be achieved by 

starting with a set of d-bands. Nm, these tedmiques will obviously 

apply to bands that result f m  a tight-binding approach. The 

difference here is that we are including effects that go beyond the 


